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INTRODUCTION AND PRELIMINARIES

Let G be a finitely presented group, and let P = 〈x;r〉 be a finite presentation for G. If we regard the above P as
a 2-complex with single 0-cell whose 1-cells are in bijective correspondence with the elements of x, and whose 2-
cells are attached by the boundary path determined by the spelling of the corresponding element of r in the standard
way, then G is just the fundamental group of P . Therefore the deficiency of P is defined by de f (P) = −|x|+ |r|.
Let δ (G) = −rkZ(H1(G))+ d(H2(G)), where rkZ( .) denotes the Z-rank of the torsion-free part and d( .) means the
minimal number of generators. Then it is a well known fact that for the presentation P , the inequality de f (P)≥ δ (G)
always holds. Thus we define the deficiency de f (G) of a finitely presented group G is the maximum deficiency over
all such presentations P . Moreover we say G is efficient if de f (G) = δ (G), and P such that de f (P) = δ (G) is then
called an efficient presentation.

One of the most effective way to show efficiency for the group G is to use spherical pictures ([2, 11]) over P . These
geometric configurations are the representative elements of the second homotopy group π2(P) of P which is a left
ZG-module. There are certain operations on spherical pictures. Suppose Y is a collection of spherical pictures over
P. Allowing these operations lead to the notion of equivalence (rel Y) of spherical pictures. Then it has been proved
that the elements 〈P〉, where P is in the set Y, generate π2(P) as a module if and only if every spherical picture is
equivalent (rel Y) to the empty picture. Therefore one can easily say that if the elements 〈P〉 generate π2(P) then Y
generates π2(P). For any picture P over P and for any R ∈ r, the exponent sum of R in P, denoted by expR(P), is the
number of discs of P labeled by R minus the number of discs labeled by R−1. We remark that if any two pictures P1
and P2 are equivalent then for all R ∈ r their exponent sums are equivalent. Let n be a non-negative integer. Then P

is said to be n-Cockcroft if expR(P)≡ 0 (mod n) (where congruence (mod 0) is taken to be equality) for all R ∈ r and
for all spherical pictures P over P . Then a group G is said to be n-Cockcroft if it admits an n-Cockcroft presentation.
To verify that the n-Cockcroft property holds, it is enough to check for pictures P ∈ Y, where Y is a set of generating
pictures. The case n = 0 is just called Cockcroft. For a connection between Cockcroft property and efficiency, we
should give the following result which is essentially due to Epstein [7] that can also be found in [9]. So let us consider
a presentation P = 〈x;r〉 for the group G.

Theorem 1 P is efficient if and only if it is p-Cockcroft for some prime p.
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As a consequence of this above theorem, it is easy to see that if P is Cockcroft then it is efficient. These two facts
will be used in the proof of main result of this paper.

Let A be a finite cyclic group of order t and D be the group F2 (the free abelian group having rank 2), with respective
presentations PA = 〈a ; at〉 and PD = 〈s, c ; sc = cs〉. It is a well known fact that if we want to obtain a semidirect
product G = D×θ A, then we need to define a regular homomorphsim θ from A to automorphism group of D. Now
if we regard the elements [cmdn]D of D as 1× 2 matrices [m n], then we can represent automorphisms of D by 2× 2
matrices with integer entries. In other words we can represent automorphisms θ[a] of D by the matrix

M =

[
α11 α12
α21 α22

]
.

For simplicity, let us label M as the form

[
U1 V1
W1 Z1

]
, and then let us multiply it by itself. Now by relabelling the

matrix M 2 as

[
U2 V2
W2 Z2

]
and iterating this procedure, we finally have

M
t =

[
Ut−1α11 +Vt−1α21 Ut−1α12 +Vt−1α22
Wt−1α11 +Zt−1α21 Wt−1α12 +Zt−1α22

]
,

say [
Ut Vt
Wt Zt

]
.

In fact this tth power of M will be needed for the following lemma.
In general, if we have any two groups G1 and G2 that generated by the sets x and y, respectively, then for each x ∈ x

and y ∈ y and for a given homomorphism θ , we are allowed to choose a word yθx on y with [yθx]G2 = [y]G2 θ[x]G1
(see,

for instance, [6]). In our case, we will restrict ourselves only to the choice

sθa = sα11cα12 and cθa = sα21cα22
.

Hence, for the function θ : A → Aut(D) to be a well-defined homomorphism, we must require θ[at ] = θ[1] or
equivalently that M t is equal to identity matrix. So we have the following lemma that will be played an important role
to have a semidirect product.

Lemma 2 The function θ : A→ Aut(D) defined by [a] 	→ θ[a] is a well-defined group homomorphism if and only if

Ut = 1 , Vt = 0 , Wt = 0 and Zt = 1.

Proof This follows immediately from the equality of M t = I2×2.

By this lemma, we definitely have a homomorphism and so, have a semidirect product G = D×θ A (of the cyclic
group of order t by the free abelian group rank 2) with a presentation

PG =
〈
a,s,c ; at

, [s,c], Tsa, Tca
〉

(1)

(see [8]), where
Tsa : sa = asα11 cα12

, Tca : ca = asα21 cα22
,

respectively.
Therefore the main result of this paper is the following:

Theorem 3 Let p be a prime or 0. Then PG, as in (1), is p-Cockcroft if and only if the following conditions hold:

(i) detM ≡ 1 (mod p),

(ii)
t−1

∑
i=1

Ui ≡ 1 (mod p),
t−1

∑
i=1

Vi ≡ 0 (mod p),

t−1

∑
i=1

Wi ≡ 0 (mod p),
t−1

∑
i=1

Zi ≡ 1 (mod p),
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(iii) expS(By,at )≡ 0 (mod p), for y ∈ {s,c}.

Example 4 By Lemma 2, a group G having one of the presentation

i) P1 =
〈
a,s,c ; a2

, [s,c], sa = askc1−k
, ca = as1+kc−k

〉
,

ii) P2 =
〈
a,s,c ; a2

, [s,c], sa = as−1
, ca = askc

〉
, where k = 2n ∈ Z,

iii) P3 =
〈
a,s,c ; a3

, [s,c], sa = asc, ca = as−3c−2
〉
,

iv) P4 =
〈
a,s,c ; a3

, [s,c], sa = ac, ca = as−1c−1
〉
,

defines a semidirect product. Also each of P1, P2, P3 and P4 has deficiency 1.

In the remaning part of this paper, by introducing the generating pictures for the presentation PG in (1), we will
prove Theorem 3.

DEFICIENCY OF PG

In this section, by [1], we will first obtain a generating set (i.e. the generating pictures) of π2(PG), where PG as
in (1). After that, by considering this set, we will prove the main result which was stated the result for PG to be
p-Cockcroft (and so, by Theorem 1, to be efficient) for some prime p or 0. Then, by picking one of the presentation
given in Example 4, we will show that it is efficient (more precisely, it is a deficiency one presentation) for the group
G.

The generating set of π2(PG)

Let us consider the group G=D×θ A with the presentation PG in (1), where A and D are presented by PA = 〈a ; at〉
and PD = 〈s, c ; sc = cs〉, respectively. Recall that Tsa and Tca denote the relators sa = a(sθa) and ca = a(cθa),
respectively, where

sθa = sα11cα12 and cθa = sα21 cα22
.

For the relator at (t ∈ Z+) and for any y ∈ {s,c}, we denote the word (· · ·((yθa)θa)θa · · ·)θa) by yθat , and this can be
represented by a picture, say Aat

,y, as drawn in Figure 1 in [4].
Moreover, if W = sε1cε2 sε3cε4 · · ·sεm−1cεm is a word on the set {s,c}, then for the generator a, we denote the word

(sε1θa)(cε2θa) · · ·(sεm−1θa)(sεmθa) by Wθa.
Let XA and XD be a generating set of π2(PA) and π2(PD), respectively. By [2], each of XA and XD contains a single

generating picture PA and PD, respectively as drawn in Figure 2 in [4].
For simplicity, let us denote the commutator relator [s,c] by R.
Since [Rθa]PD = [1θa]PD , there is a non-spherical picture, say Bs,c, over PD with the boundary label

Rθa = sα11cα12 sα21cα22(sα21cα22 sα11 cα12)−1
.

We note that, by the dependence on the choice of homomorphism θa (i.e. choice of matrix M ), there are various Bs,c
pictures which can be drawn.

Let us consider the relator at and the set of generators {s,c} for the presentation PD. Then we get non-spherical
pictures Aat

,y, for each y ∈ {s,c}. It is clear that Aat
,y pictures consist of only Tya (y ∈ {s,c}) discs.

In addition to above non-spherical pictures, since [yθat ]PD = [yθ1]PD , for each y ∈ {s,c}, there is a non-spherical
picture, By,at say, over PD with boundary label yθat .

Our aim is now to contruct spherical pictures by using these above non-spherical pictures:
Let us consider the single Bs,c picture. If we process the boundary of Bs,c by a single a-arc, then for each fixed

y ∈ {s,c}, we get one positive and one negative Tya-discs. Therefore, for the same Tya-dics, we have two discs with
opposite sign and so these give us that we have one R-disc. Hence we have a new non-spherical picture containing the
single Bs,c picture, two different types of Tya-discs (such that each of has one positive and one negative disc) and one
R-disc. The boundary label of this new picture is a−1a. Clearly to obtain a spherical picture, say Psc, from this last
non-spherical picture, we must combine a and a−1 by an arc (see Figure 3-(a) in [4]). Thus let Xsc be the set {Psc}.
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Now let us consider one of the non-spherical picture Aat
,y with the boundary label

yaty−1(yθa)
−1a−t

.

To obtain a spherical picture from this non-spherical picture, we first need to fix two at -discs which one of them
is positive and the other is negative. After that we can combine y and y−1 by an arc. So we finally need to fix the
subpicture (By,at )−1 for the part of the boundary (yθat )−1. Thus, for each y ∈ {s,c}, we have a spherical picture, say
Pya, as in Figure 3-(b) in [4]. Therefore let Xsca = {Psa,Pca}.

Although the monoid version of the following proposition can be found in [13], the group version can be either
proved directly by the result in [1] or seen at the first author’s thesis in the same reference.

Proposition 5 Suppose G = D×θ A is a semidirect product with associated presentation PG, as in (1). Then a
generating set of the second homotopy module π2(PG) is

XA∪XD∪Xsc∪Xsca.

We should note that, by applying completely the same progress, the above proposition could be constructed for
the semidirect product of any two groups G1 and G2 with associated presentations PG1 = 〈x;r〉 and PG2 = 〈y;s〉,
respectively.

The proof of Theorem 3

By concerning the generating pictures defined in Proposition 5, we will count the exponent sums in these pictures to
deduce the p-Cockcroft property and so efficiency. In other words, in the proof, we will basically count the number of
discs in each of spherical pictures PA, PD, Psc and Pya, where y ∈ {s,c}. It is quite clear that PA and PD are Cockcroft,
and so p-Cockcroft.

Now let us consider the picture Psc as drawn in Figure 3-(a) in [4]. It contains a single negative R-disc, a single Bs,c
picture and balanced (one positive and one negative) number of Tsa and Tca-discs. We first note that the boundary of
Bs,c is equal to the Rθa, more clearly,

sα11 cα12 sα21cα22(sα21cα22 sα11cα12)−1
.

That means, inside Bs,c, we have α11α22-times positive and α12α21-times negative R-discs, i.e.

expR(Bs,c) = detM = α11α22−α12α21.

So to balanced the single negative R-disc in Psc, we must have detM ≡ 1 (mod p), as required. This gives the
condition (i).

For a fixed y ∈ {s,c}, let us consider a picture Pya (see Figure 3-(b) in [4]). It contains one positive and one negative
at -discs and two subpictures Aat

,y and By,at , where y∈ {s,c}. Clearly expat (Pya) = 1−1 = 0, and so there is nothing to
do. Now let us consider the matrices M , M 2, · · ·, M t−1 to use in the calculation of exponent sums in the subpicture
Aat

,y. We know that the each of the subpicture Aat
,y consists of only Tya-discs (y ∈ {s,c}). By using the morphism

θ[a] of D defined by [s] 	→ [sα11cα12 ] and [c] 	→ [sα21cα22 ], a simple calculation shows that the sum of first row and first
column elements for all M j (1≤ j ≤ t−1) matrices gives the exponent sum of Tsa-discs in Aat

,s, the sum of first row
and second column elements gives the exponent sum of Tca-discs in Aat

,c, etc. In other words

U1 +U2 + · · ·+Ut−1 = expTsa(Aat
,s),

V1 +V2 + · · ·+Vt−1 = expTca(Aat
,s),

W1 +W2 + · · ·+Wt−1 = expTsa(Aat
,c),

Z1 +Z2 + · · ·+Zt−1 = expTca(Aat
,c).

Therefore to p-Cockcroft property be hold, we must have

t−1

∑
i=1

Ui ≡ 1 (mod p),
t−1

∑
i=1

Vi ≡ 0 (mod p),

t−1

∑
i=1

Wi ≡ 0 (mod p),
t−1

∑
i=1

Zi ≡ 1 (mod p),
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as required. This gives the condition (ii).
In picture Pya, we also have a subpicture By,at having boundary label yθat . (We note that the boundary word yθat

is actually a piece of the boundary label a−tdatd−1(yθat )−1 of the subpicture Aat
,y). In fact the word yθat contains a

finite number of only “s" and “c" letters, and so the subpicture By,at contains only commutator R-discs. Therefore the
exponent sum of R-discs in By,at must congruent to zero by modulo p, as required.

Conversely suppose that these three conditions (i), (ii) and (iii) hold. Then, by using the generating set of π2(PG),
it is easy to see that the presentation PG is p-Cockcroft for a prime p or 0.

Hence the result.

After completed this above proof, we can easily say that PG is efficient (by Theorem 1). Since number of relators
is precisely one more than number of generators, PG is actually a deficiency one presentation.

Let us consider the presentation P1 in Example 4. Clearly it presents a semidirect product since the square of

matrix

[
k 1− k

1+ k −k

]
is equal to the identity (by Lemma 2). Assume k = 1 in P1. By considering Figures 1, 2

and 3 in [4], one can easily draw the generating pictures for π2(P1) while k = 1. In this case, the subpicture Bs,c
contains only a single positive R-disc that balanced one negative R-disc in Psc. Thus all discs in the spherical picture
Psc are balanced. Also, for the picture Psa, there is no subpicture Bs,a2 . In Psa, we actually have one positive and one
negative a2-discs, and again one positive and one negative Tsa-discs. So, as in Psc, all discs in Psa are balanced as well.
Finally, for the subpicture Aa2

,c of Pca, we have one positive and one negative Tca-discs, and two positive Tsa-discs.
In other words, expTca(Aa2

,c) = 1−1 = 0 and expTsa(Aa2
,c) = 2. Additionally, in the subpicture Aa2

,c of Pca, we have
two positive R-discs. Therefore the presentation

P
1
1 =

〈
a,s,c ; a2

, [s,c], sa = as, ca = as2c−1〉
is 2-Cockcroft and so efficient (by Theorem 1). More precisely, P1

1 is a deficiency 1 presentation.
In fact, the deficiencies of other presentations P2, P3 and P4 in Example 4 can be seen quite similar as in P1

case. In detailed, while P2 is 2-Cockcroft, P3 and P4 are Cockcroft and so p-Cockcroft for any prime p.
Note that

1) In [10], Lustig developed a test to investigate the minimality of a group presentation. In fact this test has been
widely used while the presentation is inefficient. By this test, one can easily says that if if a group has an efficient
presentation while this presentation is minimal, then this group is inefficient. In other words, there is no way
to prove that this group (presented by this minimal but inefficient presentation) is efficient. Lustig test basically
works on the Fox ideals obtained from the generating pictures of the second homotopy modules. In our case,
by concerning presentation PG in (1) and using this Lustig test, we could not get a minimal but inefficient
presentation example. (For instance, in the presentation P2 given in Example 4, if we take k �= 2n for any integer
n, then P2 becomes an inefficient presentation. But Lustig test does not give an answer whether it is minimal
while k �= 2n). Therefore obtaining minimality while having inefficiency and constructing relationship (if any)
between some other algebraic properties and inefficiency can be studied for a future project.

2) The monoid version of the p-Cockcroft property and minimality while having inefficiency of the semidirect
product have been defined and examined in detail in [4] and [5], respectively. In fact it is not hard to find
deficiency one monoid presentations.

3) It is known that a semidirect product A×B is residually finite RF (i.e. the intersection of all its subgroups of
finite index is trivial) if both A and B are RF and A is finitely generated. It is also well known that there is a
relationship between the properties RF and Largeness of groups. After that, one can ask whether our group G
with presentation (1) is large or not. In deficiency one presentations, there are significant studies on to have large
property (see, for instance, ([3, Theorem 3.6], [12]).
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