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This paper investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) to predict the
performance of an R134a vapor-compression refrigeration system using a cooling tower for heat rejec-
tion. For this aim, an experimental system was developed and tested at steady state conditions while
varying the evaporator load, dry bulb temperature and relative humidity of the air entering the tower,
and the flow rates of air and water streams. Then, utilizing some of the experimental data for training,
an ANFIS model for the system was developed. This model was used for predicting various performance
parameters of the system including the evaporating temperature, compressor power and coefficient of
performance. It was found that the predictions usually agreed well with the experimental data with cor-
relation coefficients in the range of 0.807–0.999 and mean relative errors in the range of 0.83–6.24%. The
results suggest that the ANFIS approach can be used successfully for predicting the performance of refrig-
eration systems with cooling towers.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The vapor-compression refrigeration system with a water-
cooled condenser employs a cooling tower to reject the heat ab-
sorbed by the water at the condenser to the ambient air. Because
the temperature of the water stream leaving the cooling tower is
only a few degrees above the ambient wet bulb temperature, this
system offers condensing temperatures limited by ambient wet
bulb temperature. Consequently, the refrigeration system using a
water-cooled condenser operates at lower condenser pressures,
thus requiring less compressor power compared with the system
using an air-cooled condenser.

Modeling the operation of a refrigeration system requires an
elaborate analysis of the heat rejection to the ambient air.
Although it is relatively simple to model the heat transfer in an
air-cooled condenser, modeling the concurrent heat and mass
transfer in a cooling tower is quite difficult. Since the first theoret-
ical analysis of cooling towers performed by Merkel, investigators
have developed various mathematical models for estimating the
size and thermal performance of forced-flow cooling towers (Ber-
nier, 1994; Braun, Klein, & Mitchell, 1989; Dreyer & Erens, 1996;
Fisenko, Brin, & Petruchik, 2004; Halasz, 1999; Soylemez, 1999;
Sutherland, 1983; Webb, 1984). However, most of these models
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utilized experimental data to evaluate transfer coefficients and
transfer area. Some of these investigators compared their results
with experimental ones, and reported differences usually in the
range of 3�15%. On the other hand, the mathematical models of
refrigeration systems require a large number of geometrical
parameters defining the system, which may not be readily avail-
able, and the computer simulations employed in these models
are usually complicated due to their dealing with the solution of
complex differential equations. Furthermore, the mathematical
modeling of cooling towers requires experimental data, and their
predictions may not be sufficiently accurate in many cases. Alter-
natively, the operation of refrigeration systems with cooling tow-
ers can be modeled using soft computing techniques such as
artificial neural network (ANN) and adaptive neuro-fuzzy inference
system (ANFIS) approaches with significantly less engineering ef-
fort. These new approaches can extract expertise from data with-
out requiring any explicit mathematical representation, thus
easily modeling the physical phenomena in complex systems to
predict their behavior under given conditions. Therefore, they
can be applied to various engineering problems which are too com-
plex to deal with using classical modeling techniques.

The ANN modeling of air conditioning and refrigeration systems
has been studied by many investigators. This approach was used
for predicting the performance of the systems or components such
as the evaporator (Pacheco-Vega, Sen, Yang, & McClain, 2001), heat
pumps (Bechtler, Browne, Bansal, & Kecman, 2001; Esen, Inalli,
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Nomenclature

A, B nonlinear parameters in the consequent parts of the
fuzzy rules

ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network
A0 orifice cross section area (m2)
COP coefficient of performance
f output of the fuzzy model
h specific enthalpy of the refrigerant (kJ kg�1)
hw specific enthalpy of the water (kJ kg�1)
I current flow through the heaters (A)
K0 flow coefficient
_m mass flow rate (kg s�1)

MRE mean relative error
N number of points in data set or number of independent

variables in function R
O output function
p, q, r linear parameters in the consequent parts of the fuzzy

rules
Pm orifice differential (mmH2O)
Qcond condenser heat rejection rate (W)
Qe evaporator load (W)
r correlation coefficient
R a function of independent variables
R2 absolute fraction of variance
RMSE root mean square error
T temperature (�C)

V voltage across the heaters (V)
w firing strength of a rule
w normalized firing strength output
Wcomp compressor power (W)
x, y inputs of the fuzzy model
X independent variable
Y expansion factor

Greek symbols
/ relative humidity (%)
l membership function
q density (kg m�3)
DP orifice pressure drop (Pa)
x specific humidity

Subscripts
a air
comp compressor
cond condenser
dis compressor discharge
e evaporator
in inlet
out outlet
r refrigerant
v water vapor
w water or wet bulb
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Sengur, & Esen, 2008a) liquid chiller (Swider, 2003), ejector-
absorption refrigeration system (Sozen, Arcaklioglu, & Ozalp,
2003), vapor-compression refrigeration systems (Arcaklioglu,
2004; Ertunc & Hosoz, 2006; Hosoz & Ertunc, 2006a), automobile
air conditioning system (Hosoz & Ertunc, 2006b), and cooling
tower (Hosoz, Ertunc, & Bulgurcu, 2007). On the other hand, the
application of ANFIS approach to the modeling of thermal systems
is a more recent progress although the ANFIS was first introduced
in early 90s (Jang, 1993). The ANFIS approach was used for model-
ing the transient heat transfer in circular duct flow (Hasiloglu, Yil-
maz, Comakli, & Ekmekci, 2004), predicting the performance of
ground-coupled heat pump systems (Esen, Inalli, Sengur, & Esen,
2007, 2008b), modeling the performance of an evaporative con-
denser (Ertunc & Hosoz, 2008), predicting the fan speed for energy
saving in an HVAC system (Soyguder & Alli, 2009), predicting the
heat transfer coefficient in pool boiling of distilled water (Das &
Kishor, 2009) and predicting the tip speed ratio in wind turbines
(Ata & Kocyigit, 2010).

In this study, the performance of a vapor-compression refriger-
ation system using R134a as the working fluid and employing a
counter-flow cooling tower has been modeled using ANFIS ap-
proach. Then, the developed model has been used for predicting
various performance parameters of the refrigeration system,
including the evaporating temperature, compressor power, coeffi-
cient of performance, and the temperature of the water stream
leaving the tower.
2. Description and thermodynamic analysis of the experimental
setup

The ANFIS approach has been applied to the experimental
vapor-compression refrigeration system with a counter-flow cool-
ing tower shown in Fig. 1. The refrigeration system consists of a
reciprocating compressor, a shell-and-coil type water-cooled con-
denser coupled to the cooling tower, a thermostatic expansion
valve and an electrically-heated evaporator. The system was
charged with 600 g of R134a.

The twin-cylinder open type compressor has a swept volume of
75.7 cm3 rev�1, and it is belt-driven by a single-phase electric mo-
tor. The water-cooled condenser consists of a vertical coil enclosed
in welded steel shell, and has a heat transfer area of 0.075 m2. The
evaporator was made from copper tube with two separate electric
resistance heaters rolled inside the tube. The refrigeration load is
provided to the evaporator by varying the voltage across the elec-
tric heaters via a variable transformer.

The cooling tower consists of air and water circuit elements,
and a column of packing material through which the two streams
are brought into contact with each other. The column is 150
mm � 150 mm � 600 mm high, and it contains eight decks of plas-
tic plates with a total transfer area of 1.14 m2. A centrifugal fan
pulls the ambient air into the tower at a rate determined by the
adjustment of the damper setting. After absorbing heat and mois-
ture, the air stream discharges into the atmosphere through an ori-
fice used for measuring airflow rate. A circulation pump draws the
cooled water from a tank, and sends it to the water-cooled con-
denser. The water flow rate can be adjusted by a hand-operated
control valve. After absorbing the heat from the condenser, the
water stream enters the cooling tower where it is dispensed and
let to fall down over the plastic plates. Finally, the cooled water
flows into the tank. Because some water evaporates into the air,
the water level in the tank is kept constant by adding makeup
water to the system through a float-controlled valve.

Fig. 1 also indicates the locations where mechanical and electri-
cal measurements were performed. Mechanical measurements
consist of temperature, pressure and mass flow rate measure-
ments, while electrical measurements are the voltage across the
electric heaters in the evaporator and current flow through these
heaters. Some features of the instrumentation are summarized in
Table 1.



Fig. 1. Schematic diagram of the experimental refrigeration system with a cooling tower.
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All temperature measurements were performed using K-type
thermocouples. The thermocouples for the refrigerant temperature
were soldered to the copper tube. Both dry and wet bulb temper-
atures of the air stream at the inlet and outlet of the cooling tower
were measured. The evaporating and condensing pressures were
monitored using Bourdon tube gauges. The refrigerant and water
mass flow rates were measured with variable-area flow meters.
The air mass flow rate through the cooling tower was determined
by measuring the pressure difference across the orifice ðDPÞ using
an inclined manometer, finding the density of the air leaving the
tower ðqa;outÞ with the help of dry and wet bulb temperatures,
and evaluating them in the following equation:

_ma ¼ qa;outK0A0Y

ffiffiffiffiffiffiffiffiffiffiffi
2DP
qa;out

s
ð1Þ

where K0 is flow coefficient, A0 is orifice cross section area and Y is
expansion factor. Inserting the values of these three constants into
Eq. (1) and defining DP as a function of Pm, which stands for the ori-
fice differential in mmH2O, yields

_ma ffi 0:0137
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pmqa;out

q
ð2Þ

The evaporator load can be evaluated for the refrigerant and the
heaters sides:
Table 1
Characteristics of the instrumentation.

Measured variable Instrument Range Accuracy

Refrigerant
temperature

Type K
thermocouple

�50 to100 �C 0.3 �C

Refrigerant
pressure

Bourdon gauge �100 to 600, 0–
2000 kPa

5, 20 kPa

Refrigerant flow
rate

Variable area flow
meter

0�20 g s�1 5%

Air dry bulb
temperature

Type K
thermocouple

0�100 �C 0.3 �C

Air wet bulb
temperature

Type K
thermocouple

0�100 �C 0.3 �C

Air mass flow rate Orifice-inclined
manometer

0�40 mmH2O 1 mmH2O

Water mass flow
rate

Variable area flow
meter

0�50 g s�1 5%

Voltage Analogue voltmeter 0�250 V 2 V
Current Analogue ammeter 0�10 A 0.05 A
Qe ¼ _mrðhe;out � he;inÞ ffi VI ð3Þ

As seen in Eq. (3), the evaporator load for the refrigerant side uti-
lizes the refrigerant mass flow rate and refrigerant enthalpies at
the outlet and inlet of the evaporator, while that for the heaters side
relies on the results of voltage and current measurements. The load
deviations between two sides were usually within ±5%, and only the
heaters side results were used as the evaporator load due to their
having lower uncertainties. Then, the refrigerant mass flow rate
based on the evaporator load for the heaters side can be determined
from

_mr ¼
VI

he;out � he;in
ð4Þ

The accuracy for the refrigerant mass flow rate measurements
was equal to ±5%, which was poorer than the uncertainty for the
flow rates obtained from Eq. (4). Therefore, only the results of this
equation were used as the refrigerant flow rate, while the results of
direct measurements were used for checking purposes.

Assuming that the compression process is adiabatic, the com-
pressor power absorbed by the refrigerant can be determined from

Wcomp ¼ _mrðhcomp;out � hcomp;inÞ ð5Þ

Assuming that the water-cooled condenser is insulated per-
fectly, the rate of heat rejected by the refrigerant at the condenser
can be equated to the rate of heat absorbed by the water stream:

Qcond ¼ _mrðhcond;in � hcond;outÞ ffi _mwðhw;cond;out � hw;cond;inÞ ð6Þ

As seen in the above equation, the evaluation of the heat rejection at
the condenser for the water side is based on the water mass flow
rate and water enthalpies at the outlet and inlet of the condenser.
The deviations between two sides were usually within ±5%, and
only the refrigerant side results were used as the condenser heat
rejection rate.

The ratio of the evaporator load to the compressor power gives
the coefficient of performance for the refrigeration system:

COP ¼ Qe

Wcomp
ð7Þ

Finally, using the mass flow rate and specific humidities of the
air stream entering and leaving the tower, the rate of water evap-
orated into the air stream in the cooling tower, which is equal to
the rate of makeup water, can be evaluated from

_mv ¼ _maðxout �xinÞ ð8Þ
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In the experimental study, totally 64 different steady state test
operations were performed to acquire data for training the pro-
posed ANFIS model and testing its performance. In the tests, the
evaporator load was varied between 182 and 455 W, while the
dry bulb temperature and relative humidity of the air entering
the tower were varied in the ranges of 24.8–39.0 �C and 22.0–
52.9%, respectively. On the other hand, the flow rates of the air
and water streams passing through the tower were changed be-
tween 41.5–90.6 g s�1 and 8–30 g s–1, respectively. In order to keep
the inlet air temperature and relative humidity at the required val-
ues, the refrigeration system along with the cooling tower was lo-
cated into an air-conditioned laboratory room.
2.1. Uncertainty analysis

The uncertainty analysis for the calculated parameters of the
refrigeration system, namely the air and refrigerant mass flow
rates, evaporator load, compressor power, condenser heat rejection
rate, COP and the rate of water evaporated into the air stream in
the cooling tower was performed using the method given by Mof-
fat (1988). According to this method, the function R is assumed to
be calculated from a set of totally N measurements (independent
variables) represented by

R ¼ RðX1;X2;X3; . . . ;XNÞ ð9Þ

Then the uncertainty of the result R can be determined by com-
bining uncertainties of individual terms using a root-sum-square
method, i.e.

dR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

@R
@Xi

dXi

� �2
vuut ð10Þ

Using the accuracies for various measured variables presented
in Table 1, the uncertainties of the calculated parameters were
determined with the evaluation of Eqs. (2)–(8) in Eq. (10). The total
uncertainties of _ma; _mr and _mv estimated by the analysis are 1.4%,
3.3% and 11.2%, respectively. On the other hand, the total uncer-
tainties of Q e;Wcomp;Q cond and COP are estimated as 1.5%, 3.6%,
3.3% and 6.4%, respectively.
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Fig. 2. The architecture of ANFIS.
3. A brief theoretical background of adaptive neuro-fuzzy
inference system

The ANFIS is a multilayer feed-forward network consisting of
nodes and directional links, which combines the learning capabil-
ities of a neural network and reasoning capabilities of fuzzy logic.
This hybrid structure of the network can extend the prediction
capabilities of ANFIS beyond ANN and fuzzy logic techniques when
they are used alone. Analyzing the mapping relation between the
input and output data, ANFIS can establish the optimal distribution
of membership functions using either a backpropagation gradient
descent algorithm alone, or in combination with a least squares
method.

ANFIS uses the fuzzy if-then rules involving premise and conse-
quent parts of Sugeno type fuzzy inference system (Jang, 1993). In
this system, it is simply assumed that the inference system has two
inputs x and y and one output f. A typical rule set with two fuzzy if-
then rules for a first order Sugeno fuzzy model can be expressed as

1. If x is A1 and y is B1, then f1 ¼ p1xþ q1yþ r1,
2. If x is A2 and y is B2, then f2 ¼ p2xþ q2yþ r2,

where p1, p2, q1, q2, r1 and r2 are linear parameters in the conse-
quent part and A1, A2, B1 and B2 are nonlinear parameters.
The corresponding equivalent ANFIS architecture for two-input
first order Sugeno fuzzy model with two rules is shown in Fig. 2.
The architecture of the ANFIS system consists of five layers,
namely, the fuzzy layer, product layer, normalized layer, de-fuzzy
layer and total output layer. The node functions in the same layer
are of the same function family as described in the following (Jang,
1993):

Layer 1: This first layer is called fuzzy layer. The adjustable
nodes in this layer are represented by square nodes and marked
by A1, A2, B1 and B2 with x and y outputs. A1, A2, B1 and B2 are
the linguistic labels (small, large, etc.) used in the fuzzy theory
for dividing the membership functions. The node function in this
layer that determines the membership relation between the input
and output functions can be given by

O1;i ¼ lAi
ðxÞ; i ¼ 1;2O1;j ¼ lBðyÞ; j ¼ 1;2 ð11Þ

where O1;i and O1;j denote the output functions, and lAi
and lB de-

note the appropriate membership functions.
Layer 2: This is the product layer and every node is a fixed node

marked by a circle node and labeled by G. The output w1 and w2 are
the weight functions of the next layer. The output of this layer, O2;i,
is the product of the input signals and given by

O2;i ¼ wi ¼ lAi
ðxÞlBi

ðyÞ; i ¼ 1;2: ð12Þ

The output signal of each node, wi, represents the firing strength of
a rule.

Layer 3: This is the normalized layer and every node in this layer
is a fixed node, marked by a circle node and labeled by N. The
nodes normalize the firing strength by calculating the ratio of firing
strength for this node to the sum of all the firing strengths, i.e.

O3;i ¼ w ¼ wi

w1 þw2
; i ¼ 1;2: ð13Þ

Layer 4: This is the de-fuzzy layer having adaptive nodes and
marked by square nodes. The node function in this layer is given
by a non-fuzzy equation

O4;i ¼ wifi ¼ wiðpixþ qiyþ riÞ; i ¼ 1;2: ð14Þ

where wi is the normalized firing strength output from the previous
layer and {pi, qi, ri} is the parameter set of this node. These param-
eters are linear and referred as consequent parameters of this node.

Layer 5: This is the last layer that simply computes the overall
system output as the summation of all incoming signals. Every
node in this layer is a fixed node, marked by circle node and la-
beled by R. The node function is given by

O5;i ¼
X

i

wifi ¼
P

iwifP
iwi

; i ¼ 1;2: ð15Þ

Note that the system output is the weighted sum of the results of
the rules. The number of fuzzy sets is determined by the number
of nodes in layer 1. On the other hand, the dimension of layer 4
determines the number of fuzzy rules employed in the architecture
that shows the complexity and flexibility of the ANFIS architecture.
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Similar to ANNs, an ANFIS network can be trained based on
supervised learning to reach from a particular input to a specific
target output. In the forward pass of the hybrid algorithm of the
ANFIS, the node outputs go forward until layer 4 and consequent
linear parameters, (pi, qi, ri), are identified by the least-squares
method using training data. In the backward pass, the error signals
propagate backwards and the premise non-linear parameters, (ai,
bi, ci), are updated by gradient descent.
4. Modeling with the ANFIS

In order to develop an ANFIS model for the experimental refrig-
eration system, the available data set, which consists of 64 input
vectors and their corresponding output vectors from the experi-
mental work, was divided into training and test sets. While 75%
of the data set was randomly assigned as the training set, the
remaining 25% was employed for testing the network performance.

There are five input parameters for the refrigeration system
which can influence its outputs: evaporator load ðQeÞ, dry bulb
temperature ðTa;inÞ and relative humidity ðuinÞ of the air stream
entering the tower, air mass flow rate ð _maÞ and water mass flow
rate ð _mwÞ. The output parameters of the refrigeration system with
the cooling tower are considered as the refrigerant mass flow rate
ð _mrÞ, compressor power ðWcompÞ, condenser heat rejection rate
ðQ condÞ, coefficient of performance ðCOPÞ, evaporating temperature
ðTeÞ, compressor discharge temperature ðTdisÞ, water temperature
at the tower outlet ðTw;outÞ and mass flow rate of the makeup water
ð _mv Þ.

The ANFIS model was developed using MATLAB Fuzzy Logic
Toolbox (2002). A subtractive fuzzy clustering was generated to
establish a rule base relationship between the input and output
parameters. The data was divided into groups called as clusters
using the subtractive clustering method to generate fuzzy infer-
ence system. In this study, the Sugeno-type fuzzy inference system
was implemented to obtain a concise representation of a system’s
behavior with a minimum number of rules. The linear least square
estimation was used to determine each rule’s consequent equation.
The fuzzy c-means was used as a data clustering technique where-
in each data point belongs to a cluster to some degree that is spec-
ified by a membership grade. Therefore, a radius value was given in
the MATLAB program to specify the cluster center’s range of influ-
ence to all data dimensions of both input and output. If the cluster
radius was specified a small number, then there will be many small
clusters in the data that results in many rules. In contrast, specify-
ing a large cluster radius will yield a few large clusters in the data
resulting in fewer rules. By trial and error, the cluster radius was
determined as 2. Then, the data was trained to identify the param-
eters of Sugeno-type fuzzy inference system based on the hybrid
algorithm combining the least square method and the backpropa-
gation gradient descent method. After training, fuzzy inference cal-
culations of the developed model were performed. Then, the input
vectors from the test data set were presented to the trained net-
work and the responses of the network, i.e. the predicted output
parameters, were compared with the experimental ones for the
performance measurement. The criterions used for measuring the
network performance were the correlation coefficient (r), mean
relative error (MRE), root mean square error (RMSE) and absolute
fraction of variance (R2). Detailed definitions of these criterions
can be found in Ertunc and Hosoz (2006) and Hosoz et al. (2007).
5. Results and discussion

The predictions of the trained ANFIS for the performance
parameters of the refrigeration system as a function of the exper-
imental values are shown in Fig. 3. The comparisons in all graphics
were made using values only from the test data set, which was not
introduced to the ANFIS during the training process. All graphics
are provided with a straight line indicating perfect prediction
and a ±10 % error band.

As seen in Fig. 3(a), the ANFIS predictions with respect to the
experimental values for the refrigerant mass flow rate result in a
mean relative error (MRE) of 0.89%, a root mean square error
(RMSE) of 0.02 g s�1, a correlation coefficient (r) of 0.999 and an
absolute fraction of variance (R2) of 0.9999 with the experimental
data. These results demonstrate that the ANFIS predicts the refrig-
erant mass flow rate quite well despite wide ranges of operating
conditions.

Because the evaluation of the compressor power requires the
refrigerant mass flow rate and refrigerant enthalpies at the inlet
and outlet of the compressor, it involves several sources of uncer-
tainty. Consequently, the resultant high uncertainty influences the
training process, thus, as reported in Fig. 3(b), yielding a relatively
poorer performance for the Wcomp predictions compared with _mr

ones.
It is seen in Fig. 3(c) that the ANFIS predicts the condenser heat

rejection rate very well. However, the performance of ANFIS for the
COP predictions is slightly poor, as revealed in Fig. 3(d). This is due
to the fact that the COP depends on two parameters, namely the
evaporator load and compressor power. Because of various uncer-
tainty sources involved in the evaluation of these parameters, the
COP has a high uncertainty, as depicted in Section 2.1. This leads
to relatively poor training, which in turn causes a poor statistical
performance for the COP predictions.

Fig. 3(e) shows that the ANFIS predictions for the evaporating
temperature have a very low RMSE and a high correlation coeffi-
cient along with a moderate MRE of 2.80%. Because the tempera-
ture of the refrigerated medium is related to the evaporating
temperature, the ANFIS predicting Te accurately would also be suc-
cessful in predicting the temperature of the refrigerated medium in
a more realistic application.

Fig. 3(f) indicates that the ANFIS predictions for the compressor
discharge temperature yield a lower MRE although it gives a higher
RMSE and a lower correlation coefficient compared with Te predic-
tions. The discharge temperature is an indicator of the compressor
durability. The possibility of the thermal destruction of the com-
pressor oil increases with rising discharge temperature.

The ANFIS predictions for the temperature of the water stream
leaving the cooling tower and the mass flow rate of water evapo-
rated into the air stream in the tower as a function of the experi-
mental values are shown in Fig. 4(a) and (b), respectively. The
ANFIS yields outstanding predictions for Tw;out with a MRE of
0.83%, a RMSE of 0.26 �C, a correlation coefficient of 0.990 and an
absolute fraction of variance of 0.9999. On the other hand, the AN-
FIS predictions for _mv are slightly poorer. This can be attributed to
the fact that _mv was evaluated from the measurements of air mass
flow rate along with dry and wet bulb temperatures at the tower
inlet and outlet. Consequently, the ANFIS trained with _mv data of
high uncertainty results in a poor prediction performance.

The comparisons of the ANFIS predictions for the eight output
parameters with the experimental results are alternatively pre-
sented in Fig. 5. It is seen that the test patterns consist of the re-
sults of 16 tests and the ANFIS remarkably predicts all of the
output parameters in almost the entire range of the experiments.
It is obvious that if a higher number of test runs had been per-
formed to provide a larger amount of experimental data for train-
ing, the ANFIS would have performed even better.

The versatility of ANFIS modeling can be noticed easily when
the ANFIS is used for investigating the effects of the input param-
eters on the outputs. For this aim, the predictions of the ANFIS
model for the COP and Te as a function of the evaporator load
and mass flow rate of the water stream circulating through the
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Fig. 3. The ANFIS predictions for the performance parameters of the refrigeration circuit vs. experimental values.
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system are presented in Figs. 6 and 7, respectively, as sample re-
sults. Note that Figs. 6 and 7 report the predictions not only in
the considered input range of the experimental study but also
those beyond the range of the experiments.

Fig. 6 indicates the changes in the predicted values of COP and
Te with respect to the evaporator load when other four input
parameters are kept constant at the values shown in the figure.
As expectedly, COP and Te rise with increasing Qe. Because the
points in Fig. 6 were not obtained experimentally, the accuracies
of these predictions can not be measured. However, the statistical
prediction performance of the developed ANFIS model has already
been presented in Figs. 3 and 4.

Fig. 7 shows the changes in the predicted values of COP and Te

with respect to the water mass flow rate circulating through the
system when other four input parameters are kept constant at
the values shown in the figure. It is observed that Te drops slightly
while COP rises moderately with increasing _mw. The higher the _mw,
the higher the rate of water evaporated into the air stream. This
higher amount of evaporated water absorbs more heat from the
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Fig. 6. The ANFIS predictions for the coefficient of performance and evaporating
temperature vs. evaporator load.
remaining water mass, thus cooling it to a lower temperature.
Then, the condensing temperature and pressure decreases with
lowering water temperature. Accompanying the drop in the con-
densing temperature, the evaporating temperature decreases with
increasing _mw. Furthermore, the lowered condensing pressure
causes a drop in the compressor power, thus yielding a rising COP.
6. Conclusions

The use of ANFIS modeling technique for predicting the perfor-
mance of a refrigeration system with a cooling tower has been
studied. For this aim, an experimental refrigeration system was
tested under different operating conditions to obtain 64 input–out-
put pairs. Then, an ANFIS model for the system was developed to
predict its various performance parameters. The performance of
the ANFIS predictions was measured using the correlation coeffi-
cient, mean relative error, root mean square error and absolute
fraction of variance. The ANFIS model usually yielded a good statis-
tical performance with the correlation coefficients in the range of
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0.807–0.999, MREs in the range of 0.83–6.24% and absolute
fractions of variance in the range of 0.9921–0.9999. Finally, using
the developed model, the effects of the evaporator load and mass
flow rate of the water stream circulating through the system on
some of the output parameters were investigated.

The results reveal that refrigeration systems with cooling tow-
ers can be modeled accurately using the ANFIS approach. This
new technique requires only a limited number of tests instead of
a comprehensive experimental study or dealing with a complex
mathematical model. Consequently, engineers relying on the ANFIS
technique for determining the performance of refrigeration sys-
tems can save both time and funds.
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