See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/331998516](https://www.researchgate.net/publication/331998516_GENERALIZED_PELL_SEQUENCES_RELATED_TO_THE_EXTENDED_GENERALIZED_HECKE_GROUPS_H3q_AND_AN_APPLICATION_TO_THE_GROUP_H33?enrichId=rgreq-4a9e19dc846d4b709f69423ab6713526-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk5ODUxNjtBUzo3NDA3ODk1MjUxNTU4NDJAMTU1MzYyOTM5NDY5MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[GENERALIZED PELL SEQUENCES RELATED TO THE EXTENDED GENERALIZED](https://www.researchgate.net/publication/331998516_GENERALIZED_PELL_SEQUENCES_RELATED_TO_THE_EXTENDED_GENERALIZED_HECKE_GROUPS_H3q_AND_AN_APPLICATION_TO_THE_GROUP_H33?enrichId=rgreq-4a9e19dc846d4b709f69423ab6713526-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk5ODUxNjtBUzo3NDA3ODk1MjUxNTU4NDJAMTU1MzYyOTM5NDY5MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf) HECKE GROUPS H3,q AND AN APPLICATION TO THE GROUP H3,3

Article · March 2019

DOI: 10.5831/HMJ.2018.40.3.197

Honam Mathematical J. 41 (2019), No. 1, pp. 197–206 https://doi.org/10.5831/HMJ.2018.40.3.197

GENERALIZED PELL SEQUENCES RELATED TO THE EXTENDED GENERALIZED HECKE GROUPS $\overline{H}_{3,q}$ AND AN APPLICATION TO THE GROUP $\overline{H}_{3,3}$

FURKAN BIROL, ÖZDEN KORUOĞLU*, RECEP SAHIN, and Bilal Demir

Abstract. We consider the extended generalized Hecke groups $\overline{H}_{3,q}$ generated by $X(z) = -(z-1)^{-1}$, $Y(z) = -(z+\lambda_q)^{-1}$ with $\lambda_q =$ $2\cos(\frac{\pi}{q})$ where $q \geq 3$ an integer. In this work, we study the generalized Pell sequences in $\overline{H}_{3,q}$. Also, we show that the entries of the matrix representation of each element in the extended generalized Hecke Group $\overline{H}_{3,3}$ can be written by using Pell, Pell-Lucas and modified-Pell numbers.

1. Introduction

The Pell, Pell-Lucas and modified Pell numbers respectively satisfy the recurrence relation with initial conditions

$$
P_n = 2P_{n-1} + P_{n-2} , P_o = 0 \text{ and } P_1 = 1
$$

\n
$$
Q_n = 2Q_{n-1} + Q_{n-2} , Q_0 = Q_1 = 2
$$

\n
$$
q_n = 2q_{n-1} + q_{n-2} , q_0 = q_1 = 1
$$

The nth Pell, Pell-Lucas and modified-Pell numbers are explicitly given by the Binet-type formulas

$$
P_n = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}
$$

Received September 6, 2018. Revised October 22, 2018. Accepted October 29, 2018.

²⁰¹⁰ Mathematics Subject Classification. 20H10, 11F06, 11B39.

Key words and phrases. Extended generalized Hecke groups, Generalized Pell sequence, Pell-Lucas numbers, modified-Pell numbers.

^{*}Corresponding author

198 Birol, Koruoglu, Sahin, and Demir

$$
Q_n = (1 + \sqrt{2})^n + (1 - \sqrt{2})^n
$$

$$
(1 + \sqrt{2})^n + (1 - \sqrt{2})^n
$$

$$
q_n = \frac{(1 + \sqrt{2}) + (1)}{2}
$$

It is easy to see that

$$
P_n + P_{n-1} = q_n = \frac{Q_n}{2}.
$$

There are many generalizations of Pell, Pell-Lucas and modified-Pell sequences in the literature. For example, in [3], Horadam defined a second-order linear recurrence sequence $W_{n+1} = pW_n + qW_{n-1}, W_o = a$ and $W_1 = b$, (where a, b, p and q are arbitrary real numbers for $n > 0$). In [15], Bicknell studied the generalized Pell sequence $U_n = bU_{n-1}$ + U_{n-2} . Here if $b = 2$, we get classic Pell sequence. Similarly, in [18], Catarino defined the generalized Pell sequences that are $P_{k,n+1} = 2P_{k,n}$ + $kP_{k,n-1}$ for $n \geq 1$ and $k > 0$ ($P_{k,o} = 0$ and $P_{k,1} = 1$). Serkland, in his master thesis [5], used a matrix generator of Pell sequence firstly, that is $M = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ and $M^n = \begin{pmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{pmatrix}$ P_n P_{n-1} . In [11], Ercalano obtained the matrix generators of Pell-Lucas sequences similarly. Also, there are many studies related to the usual and the generalized Pell sequences in [1, 2, 24].

On the other hand, in [12], Lehner introduced the generalized Hecke groups $H_{p,q}$, by taking

$$
X = \frac{-1}{z - \lambda_p} \text{ and } V = z + \lambda_p + \lambda_q,
$$

where $2 \le p \le q \le \infty$, $p + q > 4$, $\lambda_p = 2 \cos(\frac{\pi}{p})$, $\lambda_q = 2 \cos(\frac{\pi}{q})$ (*p* and q are integers). Here if we take $Y = XV = -\frac{1}{z+1}$ $\frac{1}{z+\lambda_q}$, then we get the presentation,

$$
H_{p,q} = \langle X, Y : X^p = Y^q = I \rangle \simeq C_p * C_q.
$$

In fact, generalized Hecke groups $H_{p,q}$ are the groups $G_{m,n}$ studied by Calta and Schmidt in [13] and [14].

In [4], the authors defined extended generalized Hecke groups $\overline{H}_{p,q}$, by adding the reflection $R(z) = \frac{1}{\overline{z}}$ to the generators of $H_{p,q}$ with presentation;

 $\overline{H}_{p,q} = < X, Y, R: X^p = Y^q = R^2 = (XR)^2 = (YR)^2 = I \geq \cong D_p *_{\mathbb{Z}_2} D_q.$ Extended generalized Hecke groups $\overline{H}_{p,q}$ are the groups generated by $< A, B, C > \text{in}$ [27, pp.2665]

Here, if $p = 2$, we get the Hecke groups $H_{2,q} = H_q$ and the extended Hecke groups $\overline{H}_{2,q} = \overline{H}_q$ respectively. All Hecke groups H_q are included in generalized Hecke groups $H_{p,q}$. We know from [12] that $|H_q: H_{q,q}| = 2$. Then, we have $H_{3,3} \leq \Gamma$ and $\overline{H}_{3,3} \leq \overline{\Gamma}$. The most studied Hecke groups in the literature are modular group $\Gamma = H_3$ and extended modular group $\overline{\Gamma} = \overline{H}_3$. As the coefficents of all elements are integers in Γ and $\overline{\Gamma}$, there are many studies in the literature about these groups [7],[8],[9],[19],[22] and [23].

There are strong connections between the modular, extended modular group and the recurrence number sequences that are Fibonacci, Pell and Pell- Lucas. In [20, 21], Mushtaq and Hayat obtained the relations between the generalized Pell sequence and the coset diagrams in modular group Γ. In [16], Yilmaz studied the relations between generators $(0 -1)$ $\begin{pmatrix} 0 & -1 \\ 1 & \sqrt{q} \end{pmatrix}$ in Hecke groups $H(\sqrt{q})$ $(q \geq 5$ prime numbers) and the generalized Fibonacci and Lucas sequences. In [25], the authors defined generalized Phonacci and Lucas sequences. In [25], the authors defined
the generalized Pell sequences $U_k = 2\sqrt{m}U_{k-1} + U_{k-2}$ for $k \ge 2$ and related these sequences and they gave some relations with the principle subgroups $H_2(\sqrt{m})$ of the Hecke groups $H(\sqrt{m})$. Also Jones and Thornton showed in [10] that there is a relationship between Fibonacci numbers and the entries of a matrix representation of the element

$$
f = RXY = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \in \overline{\Gamma},
$$

Here, the k^{th} power of f is

$$
f^k = \left(\begin{array}{cc} f_{k-1} & f_k \\ f_k & f_{k+1} \end{array} \right)
$$

where f_k is the Fibonacci sequence. Using these results, Koruoğlu and Sahin obtained the generalized Fibonacci sequences in $\overline{\Gamma}$ [17]. Then, they got all the elements of the extended modular group $\overline{\Gamma}$ by using Fibonacci numbers.

In this paper, we obtain a recurrence sequence which is a generalized Pell sequence using the elements RXY, RX^2Y, RX^2Y^2 in the group $\overline{H}_{3,q}$. In these sequences, we get the Pell sequence if $q = 3$. Then, we give an application using these results to the group $\overline{H}_{3,3}$. In that, we prove that the matrix entries of the each element of the group $\overline{H}_{3,3}$ can be written with Pell, Pell-Lucas and modified-Pell numbers.

2. Generalized Pell sequences in the extended Hecke groups $\overline{H}_{3,q}$

The group $\overline{H}_{3,q}$ is generated the following generators

$$
X = \frac{-1}{z-1}
$$
, $Y = -\frac{1}{z + \lambda_q}$ and $R(z) = \frac{1}{\overline{z}}$

where $\lambda_q = 2\cos(\frac{\pi}{q})$, q an integer $3 \leq q$. Then we get the presentation of the group $\overline{H}_{3,q}$,

$$
\overline{H}_{3,q} = \langle X, Y, R : X^3 = Y^q = R^2 = (XR)^2 = (YR)^2 = I \rangle.
$$

Throughout this paper, we identify matrix representions of any elements in $\overline{H}_{3,q}$. We use only the matrix representation A, because $\pm A$ represent the same transformation. Hence, we write the generators as

$$
X = \left(\begin{array}{cc} 0 & -1 \\ 1 & -1 \end{array}\right), Y = \left(\begin{array}{cc} 0 & -1 \\ 1 & \lambda_q \end{array}\right), R = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).
$$

Theorem 2.1. Consider the following block forms in $\overline{H}_{3,q}$:

$$
XYR = \begin{pmatrix} \lambda_q & 1\\ 1 + \lambda_q & 1 \end{pmatrix}, RXY = \begin{pmatrix} 1 & 1 + \lambda_q\\ 1 & \lambda_q \end{pmatrix},
$$

$$
X^2YR = \begin{pmatrix} 1 + \lambda_q & 1\\ 1 & 0 \end{pmatrix}, RX^2Y = \begin{pmatrix} 0 & 1\\ 1 & 1 + \lambda_q \end{pmatrix}
$$

Using these block forms, we have the followings.

$$
(i) (XYR)^{k} = \begin{pmatrix} \lambda_{q}G_{k} + G_{k-1} & G_{k} \\ (1 + \lambda_{q})G_{k} & G_{k} + G_{k-1} \end{pmatrix}
$$

$$
(ii) (RXY)^{k} = \begin{pmatrix} G_{k} + G_{k-1} & (1 + \lambda_{q})G_{k} \\ G_{k} & \lambda_{q}G_{k} + G_{k-1} \end{pmatrix}
$$

$$
(iii) (X^{2}YR)^{k} = \begin{pmatrix} G_{k+1} & G_{k} \\ G_{k} & G_{k-1} \end{pmatrix}
$$

$$
(iv) (RX^{2}Y)^{k} = \begin{pmatrix} G_{k-1} & G_{k} \\ G_{k} & G_{k+1} \end{pmatrix}
$$

where $G_0 = 0$, $G_1 = 1$ and $G_n = (1 + \lambda_q)G_{n-1} + G_{n-2}$ for all $n \geq 2$ integers.

Proof. (i) In order to prove, we use induction method. Firstly for $k = 2$,

$$
(XYR)^2 = \begin{pmatrix} \lambda_q & 1\\ 1 + \lambda_q & 1 \end{pmatrix} \begin{pmatrix} \lambda_q & 1\\ 1 + \lambda_q & 1 \end{pmatrix}
$$

=
$$
\begin{pmatrix} \lambda_q(1 + \lambda_q) + 1 & 1 + \lambda_q\\ (1 + \lambda_q)(1 + \lambda_q) & 1 + \lambda_q + 1 \end{pmatrix}
$$

=
$$
\begin{pmatrix} \lambda_q G_2 + G_1 & G_2\\ (1 + \lambda_q) G_2 & G_2 + G_1 \end{pmatrix}.
$$

Hence, we obtained correct result for $k = 2$. Secondly, let us assume that

$$
(XYR)^{k-1} = \begin{pmatrix} \lambda_q G_{k-1} + G_{k-2} & G_{k-1} \\ (1 + \lambda_q) G_{k-1} & G_{k-1} + G_{k-2} \end{pmatrix}, \quad k - 1 \in \mathbb{Z}^+.
$$

Finally,

$$
(XYR)^k = (XYR)^{k-1} (XYR)
$$

$$
= \begin{pmatrix} \lambda_q G_{k-1} + G_{k-2} & G_{k-1} \\ (1 + \lambda_q) G_{k-1} & G_{k-1} + G_{k-2} \end{pmatrix} \begin{pmatrix} \lambda_q & 1 \\ 1 + \lambda_q & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} \lambda_q G_k + G_{k-1} & G_k \\ (1 + \lambda_q) G_k & G_k + G_{k-1} \end{pmatrix}
$$

Therefore, we obtain a real number sequence G_n that contains the Pell-sequence. If we put $\lambda_q = 1$, we get the known sequence $G_n =$ $2G_{n-1} + G_{n-2}$.

The other cases of this theorem are easily proven similarly using the induction method. \Box

3. An application to the Generalized Hecke Group $\overline{H}_{3,3}$

Now we give an application to the group $\overline{H}_{3,3}$. The group $\overline{H}_{3,3}$ is a subgroup of the extended modular group \overrightarrow{H}_3 and there is a relationship between automorphism group of a compact bordered Klein surface with maximum odd order (O^* -group) and the group $\overline{H}_{3,3}$, [6] and [26].

Here, our aim is to find the entries of the matrix presentation of the elements in $\overline{H}_{3,3}$. For the purpose of that, we use the blocks in $\overline{H}_{3,3}$ as

$$
XY = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, X^2Y = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, XY^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, X^2Y^2 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.
$$

If we use the presentation of the group $\overline{H}_{3,3}$ and these blocks, we can express each reduced word in $\overline{H}_{3,3}$ as either

$$
Y^{a}(X^{i_0}Y^{j_0})^{m_0}(X^{i_1}Y^{j_1})^{m_1}...(X^{i_n}Y^{j_n})^{m_n}X^{b}
$$

or

$$
Y^{a}(X^{i_0}Y^{j_0})^{m_0}(X^{i_1}Y^{j_1})^{m_1}...(X^{i_n}Y^{j_n})^{m_n}X^{b}R
$$

where $a, b, i_c, j_c = 0, 1$ or 2 and m_c, n_c are positive integers $(0 \le c \le n)$.

Here, we take into account the matrix representations of four elements are

$$
RXY = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, RX^2Y = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix},
$$

$$
RXY^2 = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, RX^2Y^2 = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}.
$$

Thus, we can find each element of this group by using RXY , RX^2Y , RXY^2 , RX^2Y^2 . Firstly we give the following the Lemma.

Lemma 3.1. In $\overline{H}_{3,3},\, RXY=X^2Y^2R,\, RX^2Y=XY^2R,\, RXY^2=$ $X^2 Y R$, $RX^2 Y^2 = XY R$.

Proof. Using the relations $X^3 = Y^3 = R^2 = (XR)^2 = (YR)^2 = I$ in $\overline{H}_{3,3}$, we obtain these equalities. \Box

Now we calculate the k^{th} powers of RXY, RX²Y, RXY², RX²Y². These matrix entries can be written as Pell, Pell-Lucas and modified Pell numbers so these results are valuable. We recall that P_k is the kth Pell number and Q_k is the kth Pell-Lucas number.

Lemma 3.2. (i) For $m = RXY^2 = X^2YR$,

$$
m^{k} = \left(\begin{array}{cc} 2 & 1\\ 1 & 0 \end{array}\right)^{k} = \left(\begin{array}{cc} P_{k+1} & P_{k} \\ P_{k} & P_{k-1} \end{array}\right)
$$

(ii) For $n = RX^{2}Y = XY^{2}R$,

$$
n^{k} = \left(\begin{array}{cc} 0 & 1\\ 1 & 2 \end{array}\right)^{k} = \left(\begin{array}{cc} P_{k-1} & P_{k} \\ P_{k} & P_{k+1} \end{array}\right)
$$

(iii) For $t = RX^2Y^2 = XYR$,

$$
t^{k} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}^{k} = \begin{pmatrix} P_{k-1} + P_{k} & P_{k} \\ 2P_{k} & P_{k-1} + P_{k} \end{pmatrix} = \begin{pmatrix} \frac{Q_{k}}{2} & P_{k} \\ 2P_{k} & \frac{Q_{k}}{2} \end{pmatrix}
$$

(iv) For $l = RXY = X^2Y^2R$,

$$
l^{k} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}^{k} = \begin{pmatrix} P_{k-1} + P_{k} & 2P_{k} \\ P_{k} & P_{k-1} + P_{k} \end{pmatrix} = \begin{pmatrix} q_{k} & 2P_{k} \\ P_{k} & q_{k} \end{pmatrix}
$$

Corollary 3.3. Each reduced word in the group $H_{3,3}$ can be written as product of the four elements RXY, RX^2Y , RXY^2 , RX^2Y^2 . Hence each matrix entries are written as Pell, Pell-Lucas and modified-Pell numbers.

By using this Corollary, we give two examples.

Example 3.4. Consider the reduced word

$$
W(X, Y, R) = RX RYY RX RYY X RY RXX Y
$$

in $\overline{H}_{3,3}$. We write this word as

$$
W(X, Y, R) = (RXR)YY(RX)RYYXR(YR)(XXY)
$$

=
$$
(X2Y2)(X2Y2)(XY2)(X2Y)
$$

If we use $X^2Y^2 = Rt = lR$, $XY^2 = Rm = nR$, $X^2Y = Rn$, then we can write

$$
W(X, Y, R) = ltn2
$$

= $\begin{pmatrix} P_0 + P_1 & 2P_1 \\ P_1 & P_0 + P_1 \end{pmatrix} \begin{pmatrix} P_0 + P_1 & P_1 \\ 2P_1 & P_0 + P_1 \end{pmatrix} \begin{pmatrix} P_1 & P_2 \\ P_2 & P_3 \end{pmatrix}$
= $\begin{pmatrix} q_1 & 2P_1 \\ P_1 & q_1 \end{pmatrix} \begin{pmatrix} \frac{Q_1}{2} & P_1 \\ 2P_1 & \frac{Q_1}{2} \end{pmatrix} \begin{pmatrix} P_1 & P_2 \\ P_2 & P_3 \end{pmatrix}.$

Example 3.5. Consider the reduced word

$$
W(X, Y, R) = XXYXYYYXXYXYXYXY
$$

in $\overline{H}_{3,3}$. Similarly we write this word as

$$
W(X, Y, R) = m^{3}nml
$$

= $\begin{pmatrix} P_{4} & P_{3} \\ P_{3} & P_{2} \end{pmatrix} \begin{pmatrix} P_{0} & P_{1} \\ P_{1} & P_{2} \end{pmatrix} \begin{pmatrix} P_{2} & P_{1} \\ P_{1} & P_{0} \end{pmatrix} \begin{pmatrix} P_{0} + P_{1} & 2P_{1} \\ P_{1} & P_{0} + P_{1} \end{pmatrix}$
= $\begin{pmatrix} P_{4} & P_{3} \\ P_{3} & P_{2} \end{pmatrix} \begin{pmatrix} P_{0} & P_{1} \\ P_{1} & P_{2} \end{pmatrix} \begin{pmatrix} P_{2} & P_{1} \\ P_{1} & P_{0} \end{pmatrix} \begin{pmatrix} q_{1} & 2P_{1} \\ P_{1} & q_{1} \end{pmatrix}.$

References

- [1] A. Dasdemir, On the Pell, Pell-Lucas and Modified Pell Numbers By Matrix Method, Applied Mathematical Sciences, Vol. 5, no. 64, (2011), 3173 - 3181.
- [2] A. F. Horadam, Applications of Modified Pell Numbers to Representations, Ulam Quaterly, Volume 3, Number 1, (1994).
- [3] A. F. Horadam, *Basic Properties of a Certain Generalized Sequence of Numbers*, The Fibonacci Quarterly, Vol. 3 (3),(1965), 161-176.
- [4] B. Demir, Ö. Koruoğlu, R. Sahin, Conjugacy Classes of Extended Generalized Hecke Groups. Rev. Un. Mat. Argentina 57 , no. 1, (2016), 49-56.
- [5] C. E. Serkland, The Pell sequence and some generalizations, Master'sThesis, San Jose State Univ., Aug. 1972.
- [6] C. L. May, The real genus of groups of odd order, Rocky Mountain J. Math. 37 (2007), 1251-1269.
- [7] D. Singerman, $PSL(2, q)$ as an image of the extended modular group with applications to group actions on surfaces, Proc. Edinburgh Math. Soc. (2), 30 , Groups St. Andrews 1985., (1987), 143-151.
- [8] E. G. Karpuz, A. S. Çevik, Gröbner-Shirshov bases for extended modular, extended Hecke, and Picard groups, Russian version appears in Mat. Zametki 92, no. 5, 699–706 (2012). Math. Notes 92 , no. 5-6, (2012), 636–642.
- [9] E. G. Karpuz, A. S. Çevik, Some decision problems for extended modular groups, Southeast Asian Bull. Math. 35 , no. 5, (2011), 793-804,.
- [10] G. A. Jones, J. S. Thornton, Automorphisms and Congruence Subgroups of the Extended Modular Group, Journal of the London Mathematical Society, Vol. s2-34, Issue 1, (1986), 26-40.
- [11] J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart. ,No. 1, (1979), 71-77.
- [12] J. Lehner, Uniqueness of a class of Fuchsian groups, III. J. Math. Surveys, 8, A.M.S. Providence, R.L. (1964).
- [13] K. Calta and T. A. Schmidt, *Infinitely many lattice surfaces with special pseudo-*Anosov maps, J. Mod. Dyn. 7, No. 2, (2013), 239-254.
- [14] K. Calta and T. A. Schmidt, *Continued fractions for a class of triangle groups*, J. Aust. Math. Soc. 93, No. 1-2, (2012), 21-42 .
- [15] M. Bicknell, A primer on the Pell sequence and related sequences, Fibonacci Quart. 13, no. 4, (1975), 345-349, .
- [16] N.Y. Özgür, *Generalizations of Fibonacci and Lucas sequences*, Note di Matematica 21, n. 1, 2002, (2002), 113-125.

- $[17]$ Ö. Koruoğlu and R. Sahin, *Generalized Fibonacci sequences related to the ex*tended Hecke groups and an application to the extended modular group. Turkish J. Math. 34 , no. 3, (2010), 325-332.
- [18] P. Catarino, On Some Identities and Generating Functions for k- Pell Numbers, Int. Journal of Math. Analysis, Vol. 7, no. 38, (2013,) 1877 - 1884.
- [19] Q. Mushtaq, A. Razaq, Homomorphic images of circuits in $PSL(2,Z)$ -space, Bull. Malays. Math. Sci. Soc. 40 , no. 3, (2017), 1115-1133.
- [20] Q. Mushtaq, U. Hayat, Pell numbers, Pell-Lucas numbers and modular group,Algebra Colloquium 14(1), (2007), 97-102.
- [21] Q. Mushtaq, U. Hayat, Horadam generalized Fibonacci numbers and the modular group Indian Journal of Pure and Applied Mathematics 38(5), (2007).
- [22] R. S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the modular group, Amer. J. Math., 113 ,(1991), pp.1053–1133.
- [23] R. Sahin, S. Ikikardes O. Koruoglu, On the power subgroups of the extended modular group , Turkish J. Math., 28, (2004), 143-151.
- [24] S.H. Jafari-Petroudia, B. Pirouzb, On some properties of (k,h)-Pell sequence and (k,h) -Pell-Lucas ssequence, Int. J. Adv. Appl. Math. and Mech. 3(1), (2015), 98-101.
- [25] S. Ikikardes, Z. S. Demircioglu, R. Sahin, Generalized Pell sequences in some principal congruence subgroups of the Hecke groups, Math. Rep. (Bucur.) 18(68), no. 1, (2016), 129-136.
- [26] S. Ikikardes, R. Sahin, Some results on O*-groups, Rev. Un. Mat. Argentina 53, no. 2, (2012), 25-30.
- [27] W.P. Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not., no. 12, IMRN 2013, 2657-2698.

Furkan Birol Institue of Sciences, Department of Mathematics, Balikesir University, Balikesir, Turkey. E-mail: furkanbirol1010@gmail.com

Özden Koruoğlu Necatibey Faculty of Education, Department of Mathematics, Balikesir University, Balikesir, Turkey. E-mail: ozdenk@balikesir.edu.tr

Recep Sahin Faculty of Arts and Sciences, Department of Mathematics, Balikesir University, Balikesir, Turkey.

206 Birol, Koruoglu, Sahin, and Demir

E-mail: rsahin@balikesir.edu.tr

Bilal Demir Necatibey Faculty of Education, Department of Mathematics, Balikesir University, Balikesir, Turkey. E-mail: bdemir@balikesir.edu.tr

[View publication stats](https://www.researchgate.net/publication/331998516)