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A NEW CONTRIBUTION TO DISCONTINUITY AT FIXED

POINT

NİHAL TAŞ1 and NİHAL YILMAZ ÖZGÜR1

Abstract. The aim of this paper is to obtain new solutions to the open question
on the existence of a contractive condition which is strong enough to generate
a fixed point but which does not force the map to be continuous at the fixed
point. To do this, we use the right-hand side of the classical Rhoades’ inequality
and the number M(x, y) given in the definition of an (α, β)-Geraghty type-I
rational contractive mapping. Also we give an application of these new results
to discontinuous activation functions.

1. Introduction and Preliminaries

Recently, some solutions to the open question on the existence of contractive
conditions which are strong enough to generate a fixed point but which do not
force the mapping to be continuous at the fixed point has been proposed and
investigated (see [1], [2], [9], [15] and [17] for more details). For example, in [15],
Pant proved the following theorem as a solution of this problem.

Theorem 1.1. [15] If a self-mapping T of a complete metric space (X, d) satisfies
the conditions;

(1) d(Tx, Ty) ≤ φ (max {d(x, Tx), d(y, Ty)}), where φ : R+ → R
+ is such that

φ(t) < t for each t > 0,
(2) For a given ε > 0, there exists a δ(ε) > 0 such that

ε < max {d(x, Tx), d(y, Ty)} < ε+ δ,

implies d(Tx, Ty) ≤ ε,

then T has a unique fixed point z. Moreover, T is continuous at z if and only if

lim
x→z

max {d(x, Tx), d(z, T z)} = 0.

After then, in [1], Bisht and Pant obtained a new solution of the open problem
using the number

M(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

.

Also, in [2], they proved a fixed-point theorem for this problem using the number

N(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
α [d(x, Ty) + d(y, Tx)]

2

}

,
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where 0 ≤ α < 1.
Motivated by the above studies, we investigate new contractive conditions to

obtain one more solution to the open question. Before stating our main results, we
recall the following definitions which are necessary in the next section.

Definition 1.2. [16] Let (X, d) be a complete metric space and T be a self-mapping
of X . T is called a Rhoades’ mapping if the following condition is satisfied for each
x, y ∈ X , x 6= y :

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Let Θ be a family of functions θ : [0,∞) → [0, 1) such that for any bounded
sequence {tn} of positive real numbers, θ (tn) → 1 implies tn → 0 and Φ be a family
of functions φ : [0,∞) → [0,∞) such that φ is continuous, strictly increasing and
φ(0) = 0.

Definition 1.3. [3] Let (X, d) be a metric space, T : X → X be a mapping and
α, β : X × X → R

+. A mapping T is said to be (α, β)-Geraghty type-I rational
contractive mapping if there exists a θ ∈ Θ, such that for all x, y ∈ X , the following
condition holds:

α(x, Tx)β(y, Ty)φ(d(Tx, Ty))≤ θ(φ(M(x, y)))φ(M(x, y)),

where

M(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Tx)d(y, Ty)

1 + d(x, y)
,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}

and φ ∈ Φ.

On the other hand, there are some examples of self-mappings which have at least
two fixed points. In this case, new fixed-point results are necessary for the existence
of fixed points of self-mappings. Also it is important to study the mappings with
a fixed circle since there are some applications of these kind mappings to neural
networks (see [11] for more details). More recently, some fixed-circle theorems
have been presented as a different direction for the generalizations of the known
fixed-point theorems (see [12], [13] and [14] for more details).

Now we recall the following definition of a fixed circle and one of the known
existence theorems for fixed circles.

Definition 1.4. [12] Let (X, d) be a metric space and Cx0,r = {x ∈ X : d(x0, x) =
r} be a circle. For a self-mapping T : X → X , if Tx = x for every x ∈ Cx0,r then
we call the circle Cx0,r as the fixed circle of T .

Theorem 1.5. [12] Let (X, d) be a metric space and Cx0,r be any circle on X. Let

us define the mapping

ϕ : X → [0,∞) , ϕ(x) = d(x, x0),

for all x ∈ X. If there exists a self-mapping T : X → X satisfying

(C1) d(x, Tx) ≤ ϕ(x)− ϕ(Tx)
and

(C2) d(Tx, x0) ≥ r,

for each x ∈ Cx0,r, then the circle Cx0,r is a fixed circle of T .
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Our aim in this paper is to obtain new solutions to the open question on the
existence of contractive conditions which are strong enough to generate a fixed point
but which do not force the mapping to be continuous at the point. In Section 2,
we use the right-hand side of the classical Rhoades’ inequality and the number
M(x, y) given in the definition of an (α, β)-Geraghty type-I rational contractive
mapping for this purpose. In Section 3, we give an application of these new results
to discontinuous activation functions.

2. Main Results

In this section, we investigate some contractive conditions for the open question
mentioned in the introduction.

Theorem 2.1. Let (X, d) be a complete metric space and T be a self-mapping on

X satisfying the following conditions:

(1) There exists a function ψ : R+ → R
+ such that ψ(t) < t for each t > 0 and

d(Tx, Ty) ≤ ψ(M1(x, y)) where

M1(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Tx)d(y, Ty)

1 + d(x, y)
,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}

;

(2) There exists a δ(ε) > 0 such that ε < M1(x, y) < ε+δ implies d(Tx, Ty) ≤ ε

for a given ε > 0.

Then T has a unique fixed point y0 ∈ X and T nx→ y0 for each x ∈ X. Also, T

is discontinuous at y0 if and only if lim
x→y0

M1(x, y0) 6= 0.

Proof. Let x0 ∈ X , x0 6= Tx0 and the sequence {xn} be defined as Txn = xn+1 for
all n ∈ N ∪ {0}. Using the condition (1), we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ ψ(M1(xn−1, xn)) < M1(xn−1, xn)

= max

{

d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1,xn)d(xn,xn+1)

1+d(xn−1,xn)
,
d(xn−1,xn)d(xn,xn+1)

1+d(xn,xn+1)

}

(2.1)

= max {d(xn−1, xn), d(xn, xn+1)} .

Assume that d(xn−1, xn) < d(xn, xn+1). Then from the inequality (2.1) we get

d(xn, xn+1) < d(xn, xn+1),

which is a contradiction. So d(xn, xn+1) < d(xn−1, xn) and

M1(xn−1, xn) = max {d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).

If we put d(xn, xn+1) = un then from the inequality (2.1) we obtain

un < un−1, (2.2)

that is, un is a strictly decreasing sequence of positive real numbers and so the
sequence un tends to a limit u ≥ 0.

Suppose that u > 0. There exists a positive integer k ∈ N such that n ≥ k

implies

u < un < u+ δ(u). (2.3)
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Using the condition (2) and the inequality (2.2), we get

d(Txn−1, Txn) = d(xn, xn+1) = un < u, (2.4)

for n ≥ k. The inequality (2.4) contradicts to the inequality (2.3). Then it should
be u = 0.

Now we show that {un} is a Cauchy sequence. Let us fix an ε > 0. Without loss
of generality, we can assume that δ(ε) < ε. There exists k ∈ N such that

d(xn, xn+1) = un < δ (0 < δ < 1),

for n ≥ k since un → 0. Following Jachymski (see [7] and [8] for more details),
using the mathematical induction, we prove

d(xk, xk+n) < ε+ δ, (2.5)

for any n ∈ N. The inequality (2.5) holds for n = 1 since

d(xk, xk+1) = uk < δ < ε+ δ.

Assume that the inequality (2.5) is true for some n. We prove it for n + 1. Using
the triangle inequality, we obtain

d(xk, xk+n+1) ≤ d(xk, xk+1) + d(xk+1, xk+n+1).

It suffices to show d(xk+1, xk+n+1) ≤ ε. To do this, we prove M1(xk, xk+n) ≤ ε+ δ,
where

M1(xk, xk+n) = max

{

d(xk, xk+n), d(xk, Txk), d(xk+n, Txk+n),
d(xk,Txk)d(xk+n,Txk+n)

1+d(xk ,xk+n)
,
d(xk ,Txk)d(xk+n,Txk+n)

1+d(Txk,Txk+n)

}

. (2.6)

Using the mathematical induction hypothesis, we find

d(xk, xk+n) < ε+ δ,
d(xk, xk+1) < δ,
d(xk+n, xk+n+1) < δ,
d(xk ,Txk)d(xk+n,Txk+n)

1+d(xk ,xk+n)
< δ2

1+d(xk,xk+n)
,

d(xk ,Txk)d(xk+n,Txk+n)

1+d(Txk,Txk+n)
< δ2

1+d(Txk,Txk+n)
.

(2.7)

Using the conditions (2.6) and (2.7), we have M1(xk, xk+n) < ε + δ. From the
condition (2), we obtain

d(Txk, Txk+n) = d(xk+1, xk+n+1) ≤ ε.

Therefore, the inequality (2.5) implies that {xn} is Cauchy. Since (X, d) is a
complete metric space, there exists a point y0 ∈ X such that xn → y0 as n → ∞.
Also we get Txn → y0.

Now we show that Ty0 = y0. On the contrary, suppose that y0 is not a fixed
point of T , that is, Ty0 6= y0. Then using the condition (1), we get

d(Ty0, Txn) ≤ ψ(M1(y0, xn)) < M1(y0, xn)

= max

{

d(y0, xn), d(y0, T y0), d(xn, Txn),
d(y0,T y0)d(xn,Txn)

1+d(y0,xn)
,
d(y0,T y0)d(xn,Txn)

1+d(Ty0,Txn)

}

and so taking limit for n→ ∞ we have

d(Ty0, y0) < d(y0, T y0) = d(Ty0, y0),
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which is a contradiction. Thus y0 is a fixed point of T . We prove that the fixed
point y0 is unique. Let z0 be another fixed point of T such that y0 6= z0. By the
condition (1), we find

d(Ty0, T z0) = d(y0, z0) ≤ ψ(M1(y0, z0)) < M1(y0, z0)

= max

{

d(y0, z0), d(y0, y0), d(z0, z0),
d(y0,y0)d(z0,z0)

1+d(y0,z0)
,
d(y0,y0)d(z0,z0)

1+d(y0,z0)

}

= d(y0, z0),

which is a contradiction. Hence y0 is the unique fixed point of T .
Finally, we prove that T is discontinuous at y0 if and only if lim

x→y0
M1(x, y0) 6= 0.

To do this, we show that T is continuous at y0 if and only if lim
x→y0

M1(x, y0) = 0.

Let T be continuous at the fixed point y0 and xn → y0. Then Txn → Ty0 = y0 and

d(xn, Txn) ≤ d(xn, y0) + d(Txn, y0) → 0.

Hence we get lim
n
M1(xn, y0) = 0. On the other hand, if lim

xn→y0
M1(xn, y0) = 0 then

d(xn, Txn) → 0 as xn → y0. This implies Txn → y0 = Ty0, that is, T is continuous
at y0. �

Remark 2.2. Notice that the conditions (1) and (2) are not independent in Theorem
2.1. Indeed, in the cases where the condition (2) is satisfied, we obtain d(Tx, Ty) <
M1(x, y), where M1(x, y) > 0. If M1(x, y) = 0 then d(Tx, Ty) = 0. So the
inequality d(Tx, Ty) ≤ ε holds for any x, y ∈ X with ε < M1(x, y) < ε+ δ.

In the following example, we see that a self-mapping satisfying the conditions of
Theorem 2.1 has a unique fixed point at which T is discontinuous.

Example 2.3. Let X = [0, 4] and d be the usual metric on X . Let us define a
self-mapping T : X → X by

Tx =

{

2 ; x ≤ 2
0 ; x > 2

.

Then T satisfies the conditions of Theorem 2.1 and has a unique fixed point x = 2
at which T is discontinuous. It can be verified in this example that

d(Tx, Ty) = 0 and 0 < M1(x, y) ≤ 4 when x, y ≤ 2,

d(Tx, Ty) = 0 and 2 < M1(x, y) ≤ 16 when x, y > 2,

d(Tx, Ty) = 2 and 2 < M1(x, y) ≤ 4 when x ≤ 2, y > 2

and
d(Tx, Ty) = 2 and 2 < M1(x, y) ≤ 4 when x > 2, y ≤ 2.

Therefore the self-mapping T satisfies the condition (1) given in Theorem 2.1 with

ψ(t) =

{

2 ; t > 2
t
2

; t ≤ 2
.

Also T satisfies the condition (2) given in Theorem 2.1 with

δ(ε) =

{

15 ; ε ≥ 2
5− ε ; ε < 2

.
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It can be easily checked that

lim
x→2

M1(x, 2) 6= 0.

Consequently, T is discontinuous at the fixed point x = 2.

Now we give the following corollaries as the results of Theorem 2.1.

Corollary 2.4. Let (X, d) be a complete metric space and T be a self-mapping on

X satisfying the following conditions:

(1) d(Tx, Ty) ≤M1(x, y) for any x, y ∈ X with M1(x, y) > 0;
(2) There exists a δ(ε) > 0 such that ε < M1(x, y) < ε+δ implies d(Tx, Ty) ≤ ε

for a given ε > 0.

Then T has a unique fixed point y0 ∈ X and T nx→ y0 for each x ∈ X. Also, T

is discontinuous at y0 if and only if lim
x→y0

M1(x, y0) 6= 0.

Corollary 2.5. Let (X, d) be a complete metric space and T be a self-mapping on

X satisfying the following conditions:

(1) There exists a function ψ : R+ → R
+ such that ψ(d(x, y)) < d(x, y) and

d(Tx, Ty) ≤ ψ(d(x, y));
(2) There exists a δ(ε) > 0 such that ε < t < ε + δ implies ψ(t) ≤ ε for any

t > 0 and a given ε > 0.

Then T has a unique fixed point y0 ∈ X and T nx→ y0 for each x ∈ X.

In the following theorem, we see that the power contraction of the type M1(x, y)
allows the possibility of discontinuity at the fixed point.

Theorem 2.6. Let (X, d) be a complete metric space and T be a self-mapping on

X satisfying the following conditions:

(1) There exists a function ψ : R+ → R
+ such that ψ(t) < t for each t > 0 and

d(Tmx, Tmy) ≤ ψ(M∗

1 (x, y)) where

M∗

1 (x, y) = max

{

d(x, y), d(x, Tmx), d(y, Tmy),
d(x,Tmx)d(y,Tmy)

1+d(x,y)
,
d(x,Tmx)d(y,Tmy)
1+d(Tmx,Tmy)

}

;

(2) There exists a δ(ε) > 0 such that ε < M∗

1 (x, y) < ε+δ implies d(Tmx, Tmy) ≤
ε for a given ε > 0.

Then T has a unique fixed point. Also, T is discontinuous at y0 if and only if

lim
x→y0

M∗

1 (x, y0) 6= 0.

Proof. Using Theorem 2.1, we see that the function Tm has a unique fixed point
y0, that is, T

my0 = y0. Hence we get

Ty0 = TTmy0 = TmTy0

and so Ty0 is a fixed point of Tm. From the uniqueness of the fixed point, then we
obtain Ty0 = y0. Consequently, T has a unique fixed point. �

Remark 2.7. Using the continuity of the self-mapping T 2 (resp. the continuity
of the self-mapping T p, the orbitally continuity of the self-mapping T ) and the
number M1(x, y), we can also give new fixed-point results for this open question
(see [1] and [2] for this approach).
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We give another result of discontinuity at fixed point on a metric space.

Theorem 2.8. Let (X, d) be a complete metric space and T be a self-mapping on

X satisfying the following conditions:

(1) There exists a function ψ : R+ → R
+ such that ψ(t) < t for each t > 0 and

d(Tx, Ty) ≤ 1
2
ψ(M2(x, y)) where

M2(x, y) = max {d(x, y), d(Tx, x), d(Ty, y), d(Tx, y), d(Ty, x)} ;

(2) There exists a δ(ε) > 0 such that ε < M2(x, y) < ε+δ implies d(Tx, Ty) ≤ ε

for a given ε > 0.

Then T has a unique fixed point y0 ∈ X and T nx→ y0 for each x ∈ X. Also, T

is discontinuous at y0 if and only if lim
x→y0

M2(x, y0) 6= 0.

Proof. Let x0 ∈ X , x0 6= Tx0 and a sequence {xn} be defined as T nx0 = Txn = xn+1

for all n ∈ N ∪ {0}. Using the condition (1), we have

d(xn, xn+1) = d(Txn−1, Txn) ≤
1

2
ψ(M2(xn−1, xn)) <

1

2
M2(xn−1, xn)

=
1

2
max

{

d(xn−1, xn), d(xn, xn−1), d(xn+1, xn),
d(xn, xn), d(xn+1, xn−1)

}

=
1

2
max {d(xn−1, xn), d(xn+1, xn), d(xn+1, xn−1)}

<
1

2
max

{

d(xn−1, xn) + d(xn+1, xn), d(xn+1, xn) + d(xn−1, xn),
d(xn+1, xn) + d(xn, xn−1)

}

=
1

2
[d(xn−1, xn) + d(xn+1, xn)]

and so

2d(xn, xn+1) < d(xn−1, xn) + d(xn+1, xn). (2.8)

Using the inequality (2.8), we get

d(xn, xn+1) < d(xn−1, xn).

If we put d(xn, xn+1) = un then from the above inequality we obtain

un < un−1, (2.9)

that is, un is a strictly decreasing sequence of positive real numbers and so the
sequence un tends to a limit u ≥ 0.

Suppose that u > 0. There exists a positive integer k ∈ N such that n ≥ k

implies

u < un < u+ δ(u). (2.10)

Using the condition (2) and the inequality (2.9), we get

d(Txn−1, Txn) = d(xn, xn+1) = un < u, (2.11)

for n ≥ k. The inequality (2.11) contradicts to the inequality (2.10). Thus it should
be u = 0.
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Now we show that {un} is a Cauchy sequence. Let us fix an ε > 0. Without loss
of generality, we can assume that δ(ε) < ε. There exists k ∈ N such that

d(xn, xn+1) = un <
δ

2
,

for n ≥ k since un → 0. Following Jachymski (see [7] and [8] for more details),
using the mathematical induction, we prove

d(xk, xk+n) < ε+
δ

2
, (2.12)

for any n ∈ N. The inequality (2.12) holds for n = 1 since

d(xk, xk+1) = uk <
δ

2
< ε+

δ

2
.

Assume that the inequality (2.12) is true for some n. We prove it for n+ 1. Using
the triangle inequality, we have

d(xk, xk+n+1) ≤ d(xk, xk+1) + d(xk+1, xk+n+1).

It suffices to show d(xk+1, xk+n+1) ≤ ε. To do this, we prove M2(xk, xk+n) ≤ ε+ δ,
where

M2(xk, xk+n) = max

{

d(xk, xk+n), d(Txk, xk), d(Txk+n, xk+n),
d(Txk, xk+n), d(Txk+n, xk)

}

= max

{

d(xk, xk+n), d(xk+1, xk), d(xk+n+1, xk+n),
d(xk+1, xk+n), d(xk+n+1, xk)

}

(2.13)

≤ max

{

d(xk, xk+n), d(xk, xk+1), d(xk+n, xk+n+1),
d(xk, xk+1) + d(xk, xk+n), d(xk+n, xk+n+1) + d(xk, xk+n)

}

.

Using the mathematical induction hypothesis, we get

d(xk, xk+n) < ε+ δ
2
,

d(xk, xk+1) <
δ
2
,

d(xk+n, xk+n+1) <
δ
2
,

d(xk, xk+1) + d(xk, xk+n) < ε+ δ,
d(xk+n,xk+n+1)+d(xk ,xk+n)

2
< ε+ δ.

(2.14)

Using the conditions (2.13) and (2.14), we have M2(xk, xk+n) < ε + δ. From the
condition (2), we obtain

d(Txk, Txk+n) = d(xk+1, xk+n+1) ≤ ε.

Therefore, the inequality (2.12) implies that {xn} is Cauchy. Since (X, d) is a
complete metric space, there exists a point y0 ∈ X such that xn → y0 as n → ∞.
Also we get Txn → y0.

Now we show that Ty0 = y0. On the contrary, y0 is not a fixed point of T , that
is, Ty0 6= y0. Then using the condition (1), we get

d(Ty0, Txn) ≤
1

2
ψ(M2(y0, xn)) <

1

2
M2(y0, xn)

=
1

2
max

{

d(y0, xn), d(Ty0, y0), d(Txn, xn),
d(Ty0, xn), d(Txn, y0)

}
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and so taking limit for n→ ∞ we have

d(Ty0, y0) <
1

2
d(Ty0, y0),

which is a contradiction. Thus y0 is a fixed point of T . We prove that the fixed
point y0 is unique. Let z0 be another fixed point of T such that y0 6= z0. From the
condition (1), we find

d(Ty0, T z0) = d(y0, z0) ≤
1

2
ψ(M2(y0, z0)) <

1

2
M2(y0, z0)

=
1

2
max

{

d(y0, z0), d(y0, y0), d(z0, z0),
d(y0, z0), d(z0, y0)

}

=
1

2
d(y0, z0),

which is a contradiction. Hence y0 is a unique fixed point of T .
Finally, we prove that T is discontinuous at y0 if and only if lim

x→y0
M2(x, y0) 6= 0.

To do this, we show that T is continuous at y0 if and only if lim
x→y0

M2(x, y0) = 0.

Let T be continuous at the fixed point y0 and xn → y0. Then Txn → Ty0 = y0 and

d(xn, Txn) ≤ d(xn, y0) + d(Txn, y0) → 0.

Hence we get lim
n
M2(xn, y0) = 0. On the other hand, if lim

xn→y0
M2(xn, y0) = 0 then

d(xn, Txn) → 0 as xn → y0. This implies Txn → y0 = Ty0, that is, T is continuous
at y0. �

In the following example, we see that the self-mapping satisfying the conditions
of Theorem 2.8 has a unique fixed point at which T is continuous.

Example 2.9. Let X = [0, 4] and d be the usual metric on X . Let us define a
self-mapping T : X → X by

Tx = 2,

for all x ∈ X . Then T satisfies the conditions of Theorem 2.8 and has a unique
fixed point x = 2 at which T is continuous. It can be verified in this example that

d(Tx, Ty) = 0 and 0 ≤M2(x, y) ≤ 4 when x, y ∈ X .

Therefore the self-mapping T satisfies the condition (1) given in Theorem 2.8 with

ψ(t) =
t

2
.

Also T satisfies the condition (2) given in Theorem 2.8 with

δ(ε) = 5− ε.

It can be easily checked that

lim
x→2

M2(x, 2) = 0.

Consequently, T is continuous at the fixed point x = 2.

Now we give the following corollaries as the results of Theorem 2.8.
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Corollary 2.10. Let (X, d) be a complete metric space and T be a self-mapping

on X satisfying the following conditions:

(1) d(Tx, Ty) ≤ M2(x,y)
2

for any x, y ∈ X with M2(x, y) > 0;
(2) There exists a δ(ε) > 0 such that ε < M2(x, y) < ε+δ implies d(Tx, Ty) ≤ ε

for a given ε > 0.

Then T has a unique fixed point y0 ∈ X and T nx→ y0 for each x ∈ X. Also, T

is discontinuous at y0 if and only if lim
x→y0

M2(x, y0) 6= 0.

Corollary 2.11. Let (X, d) be a complete metric space and T be a self-mapping

on X satisfying the following conditions:

(1) There exists a function ψ : R+ → R
+ such that ψ(d(x, y)) < d(x, y) and

d(Tx, Ty) ≤ 1
2
ψ(d(x, y)) ;

(2) There exists a δ(ε) > 0 such that ε < t < ε + δ implies ψ(t) ≤ ε for any

t > 0 and a given ε > 0.

Then T has a unique fixed point y0 ∈ X and T nx→ y0 for each x ∈ X.

In the following theorem, we can see that the power contraction of the type
M2(x, y) allows the possibility of discontinuity at the fixed point.

Theorem 2.12. Let (X, d) be a complete metric space and T be a self-mapping on

X satisfying the following conditions:

(1) There exists a function ψ : R+ → R
+ such that ψ(t) < t for each t > 0 and

d(Tmx, Tmy) ≤ 1
2
ψ(M∗

2 (x, y)) where

M∗

2 (x, y) = max {d(x, y), d(Tmx, x), d(Tmy, y), d(Tmx, y), d(Tmy, x)} ;

(2) There exists a δ(ε) > 0 such that ε < M∗

2 (x, y) < ε+δ implies d(Tmx, Tmy) ≤
ε for a given ε > 0.

Then T has a unique fixed point. Also, T is discontinuous at y0 if and only if

lim
x→y0

M∗

2 (x, y0) 6= 0.

Proof. Using Theorem 2.8, we see that the function Tm has a unique fixed point
y0, that is, T

my0 = y0. Hence we get

Ty0 = TTmy0 = TmTy0

and so Ty0 is a fixed point of Tm. From the uniqueness of the fixed point, then we
obtain Ty0 = y0. Consequently, T has a unique fixed point. �

Remark 2.13. Using the continuity of the self-mapping T 2 (resp. the continuity
of the self-mapping T p, the orbitally continuity of the self-mapping T ) and the
number M2(x, y), we can also give new fixed-point results for this open question
(see [1] and [2] for this approach).

3. An Application of the Main Results to Discontinuous Activation

Functions in Neural Networks

Discontinuous activation functions in neural networks have been become impor-
tant and frequently do arise in practise (see [6] and [10] for more details). In this
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section, we give an application of the results obtained in Section 2 to discontinuous
activation functions. Recently, this topic has been extensively studied.

In [19], the multistability analysis was investigated for neural networks with a
class of continuous (but not monotonically increasing) Mexican-hat-type activation
functions defined by

Tix =















mi ; −∞ < x < pi
li,1x+ ci,1 ; pi ≤ x ≤ ri
li,2x+ ci,2 ; ri < x ≤ qi

mi ; qi < x < +∞

, (3.1)

where pi, ri, qi, mi, li,1, li,2, ci,1 and ci,2 are constants with −∞ < pi < ri < qi <

+∞, li,1 > 0 and li,2 < 0, i = 1, 2, . . . , n.
In [10], with the inspiration from the continuous Mexican-hat-type activation

function (3.1), a general class of discontinuous activation functions was defined by

Tix =















ui ; −∞ < x < pi
li,1x+ ci,1 ; pi ≤ x ≤ ri
li,2x+ ci,2 ; ri < x ≤ qi

vi ; qi < x < +∞

, (3.2)

where pi, ri, qi, ui, vi, li,1, li,2, ci,1 and ci,2 are constants with −∞ < pi < ri < qi <

+∞, li,1 > 0, li,2 < 0, ui = li,1pi+ci,1 = li,2qi+ci,2, li,1ri+ci,1 = li,2ri+ci,2, vi > Tiri,
i = 1, 2, . . . , n. It can be easily seen that the function Tix is continuous in R except
the point of discontinuity x = qi. Then, it was studied the problem of multistability
of competitive neural networks with discontinuous activation functions (see [10] for
more details).

The activation function T

-6 -4 -2 0 2 4 6
3.0

3.5

4.0

4.5

5.0

5.5

6.0

Figure 1. The graphic of the discontinuous activation function
given in (3.3).

To obtain an application of our results given in the previous section, now we take

pi = −1, ri = 1, qi = 3,
ui = 3, vi = 6, li,1 = 1,
ci,1 = 4, li,2 = −1, ci,2 = 6,
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in (3.2) to get the following discontinuous activation function:

Tx =















3 ; −∞ < x < −1
x+ 4 ; −1 ≤ x ≤ 1
−x+ 6 ; 1 < x ≤ 3

6 ; 3 < x < +∞

. (3.3)

The function Tx has two fixed points x1 = 3 and x2 = 6. Since we have lim
x→6

M1(x, 6) =

0
(

resp. lim
x→6

M2(x, 6) = 0
)

, T is continuous at the fixed point 6. But, there is not

a limit of M1(x, 3) (resp. M2(x, 3)) as x→ 3 and so T is discontinuous at the fixed
point 3 (see Figure 1). Consequently, using the numbers M1(x, y) and M2(x, y) we
can see that the activation function defined in (3.3) is discontinuous at which fixed
points.

More generally, in the case that the number of the fixed points of an activation
function is greater than two, our results will become important to determine the
discontinuity at fixed points. We note that fixed points can be infinitely many. For
example, there are some functions which fix a circle with infinitely many points
and these kind functions can be considered as activation functions. For example,
in [11] it was used new types of activation functions which fix a circle for a complex
valued neural network (CVNN). The existence of fixed points of the complex-
valued Hopfield neural network (CVHNN) was guaranteed by using these types
of activation functions. By these reasons, now we consider Theorem 1.5 and the
number M1(x, y) together. We obtain the following proposition.

Proposition 3.1. Let (X, d) be a metric space, T be a self-mapping on X and

Cx0,r be a fixed circle of T . Then T is discontinuous at any x ∈ Cx0,r if and only if

lim
z→x

M1(z, x) 6= 0.

Proof. Let T be a continuous self-mapping at x ∈ Cx0,r and xn → x. Then Txn →
Tx = x and d(xn, Txn) → 0. Hence we get lim

n
M1(xn, x) = 0.

On the other hand, if lim
xn→x

M1(xn, x) = 0 then d(xn, Txn) → 0 as xn → x. This

implies Txn → x = Tx, that is, T is continuous at x. �

Example 3.2. If we consider the function T defined in (3.3) then it is easy to check
that T satisfies the conditions of Theorem 1.5 for the circle Cx0,r = {3, 6} with the
center x0 = 9

2
and the radius r = 3

2
. Therefore T fixes the circle Cx0,r = {3, 6} as

another point of view. By the above proposition, it can be easily deduced that the
function T is continuous at the point x1 = 6 but is not continuous at x2 = 3.

Finally, we note that it is possible to use the numberM2(x, y) for the investigation
of discontinuity at any point on the fixed circle of the activation function.

4. Conclusion

We mention that our main results are applicable to neural nets under suitable
conditions (see [4], [5] and [18] for more details). For example, McCulloch-Pitts
model is frequently used in Biology and Artificial Intelligence according to the
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discontinuity at fixed point. Also our main results can be applied on complex-
valued metric spaces since discontinuity of functions have been used in various
applicable areas such as complex-valued Hopfield neural networks (see [20] for more
details).

Acknowledgement. The authors gratefully thank to the Referees for the con-
structive comments and recommendations which definitely help to improve the
readability and quality of the paper.
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