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LOCAL GENERALIZATION OF TRANSVERSALITY CONDITIONS

FOR OPTIMAL CONTROL PROBLEMI

Beyza Billur İskender Eroglu* and Dİlara Yapişkan

Abstract. In this paper, we introduce the transversality conditions of optimal control problems
formulated with the conformable derivative. Since the optimal control theory is based on variational
calculus, the transversality conditions for variational calculus problems are first investigated and then
supported by some illustrative examples. Utilizing from these formulations, the transversality conditions
for optimal control problems are attained by using the Hamiltonian formalism and Lagrange multiplier
technique. To illustrate the obtained results, the dynamical system on which optimal control problem
constructed is taken as a diffusion process modeled in terms of the conformable derivative. The optimal
control law is achieved by analytically solving the time dependent conformable differential equations
occurring from the eigenfunction expansions of the state and the control functions. All figures are
plotted using MATLAB.
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1. Introduction

Although the roots of fractional calculus are as old as classical calculus, it has been accepted as a powerful tool
since the 1970s when its wide range applications have been realized such as viscoelasticity, diffusion phenomena,
signal processing, bioengineering, control theory, etc. The main properties of fractional operators are to model
memory and hereditary structures in the natural phenomena. There exists several fractional operators, the well
known are Riemann–Liouville and Caputo [37, 46] which are nonlocal operators defined by convolution integrals
with singular kernels. Due to the computational complexity of nonlocal fractional operators, solutions of the
fractional order differential equations are generally obtained by numerical approximations [10, 25, 41, 51]. To
remove the computational difficulties of the existing fractional operators, some new nonlocal operators with
nonsingular kernels have also been defined such as Caputo–Fabrizio or Atangana–Baleanu operators [17, 27]
whose real life applications can be found in [22, 23, 39, 50, 52]. On the other hand, all the nonlocal definitions do
not obey some of the basic properties of classical derivatives such as Leibnitz or chain rules and are not suitable
to investigate the local scaling or fractional differentiability [24]. Therefore, local derivatives with fractional
order defined by references [28, 35, 36, 38] have attracted considerable attraction. The appropriate choice of
local derivatives depends on the studied problem as similar to the nonlocal operators [14].
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In this paper, we consider the conformable derivative which is defined by expanding the usual limit definition
of the classical derivative [36]. This local operator was generalized to the left and right derivatives and also
to the sequential conformable derivative by Abdeljawad [1]. Additionally, he proposed chain rule, integration
by parts, Taylor series expansion and Laplace transformation for the conformable derivative. Atangana et al.
[18] introduced some useful properties and theorems for partial and sequential conformable derivatives. Since
the conformable derivative provides the basic properties of the classical derivative, it has been shown that
the conformable differential equations can be solved by analytical methods [15, 32, 54]. This advantage of the
conformable derivative has quickly lead applications of the conformable differential equations to the real world
problems both in the view of modeling [3, 20, 29, 30, 55] and control [33, 40, 56, 57].

Calculus of variations with fractional derivatives was born with the Riewe’s work [48, 49]. Then, Agrawal
proposed fractional Euler–Lagrange equations [4, 7]. The basic variational calculus problems contain two fixed
endpoints which are sufficient to obtain the necessary optimality conditions. But some physical problems do
not contain the appropriate number of endpoints, namely there are one or both endpoints are missing. This
situation is known as free endpoint variational calculus problem and one or two auxiliary conditions known as
transversality conditions (or natural boundary conditions) are needed to solve these types of problems. Transver-
sality conditions for fractional variational problems were firstly considered by Agrawal [6, 8, 9] in the sense of
both Caputo and Riemann–Liouville definitions. Later, these conditions in special cases including fractional
derivatives and/or fractional integrals have been investigated in many studies [11–13, 42, 43]. Transversality
conditions for fractional optimal control with different types of fractional operators have also been addressed in
[5, 26, 31, 34, 47, 53].

Since the conformable calculus is a new tool, there are only a few studies on conformable calculus of vari-
ations and conformable optimal control. Variational calculus for conformable derivatives was firstly defined
by Chung [29]. He proposed the conformable Euler–Lagrange equation and discussed the conformable version
of the Newtonian mechanics in one-dimensional case. Then Lazo and Torres [40] studied the invariant con-
ditions for both problems from conformable variational calculus and conformable optimal control with fixed
endpoint conditions and also gave the conformable version of Noether’s symmetry theorem for one- and multi-
dimensional cases. They showed the possibleness and the convenience of formulations of action principle with
conformable derivative for the frictional forces. Furthermore, İskender Eroğlu et al. [33] obtained the boundary
optimal control law of a conformable heat equation. Motivated by the different types of endpoint conditions
for conformable optimal control problems, we research the transversality conditions of conformable calculus of
variations and conformable optimal control, respectively. Through the obtained transversality conditions, we
examine the optimal control of a time-conformable diffusion process for free endpoint condition, whose analytical
solutions in different coordinates were obtained in [2, 19, 21], as an application problem. It can be observed that
the considered conformable optimal control law is achieved directly from analytical solutions without any need
of numerical techniques. Also, it is worth to emphasize that the response of the conformable optimal control
process has a similar manner with the fractional optimal control of the diffusion process [44].

The paper is organized as follows. In Section 2, the necessary definitions and the mathematical relations on
conformable calculus needed in the subsequent formulations are given. In Section 3, conformable variational
calculus problems are considered and their transversality conditions are obtained. In addition, some illustrative
examples are also given. In Section 4, transversality conditions of conformable optimal control problems are
acquired. Finally, conformable optimal control of a diffusion process is examined in Section 5.

2. Basic definitions and tools

Definition 2.1 (Conformable derivative [1, 36]). The left conformable derivative of a given function f : [a, b]→
R starting from a ∈ R of order 0 < α ≤ 1 is defined by

dαa
dtαa

f (t) = f (α)
a (t) = lim

ε→0

f
(
t+ ε (t− a)

1−α
)
− f (t)

ε
. (2.1)
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Furthermore, if the limit exists for x ∈ (a, b) means f is left α−differentiable then

f (α)
a (a) = lim

t→a+
f (α)
a (t)

and

f (α)
a (b) = lim

t→b−
f (α)
a (t) .

The right conformable derivative of f terminating at b ∈ R of order 0 < α ≤ 1 is defined by

bd
α

bdtα
f (t) =b f

(α) (t) = − lim
ε→0

f
(
t+ ε (b− t)1−α

)
− f (t)

ε
. (2.2)

Similarly, if the limit exists for xε (a, b) means f is right α−differentiable then

bf
(α) (a) = lim

t→a+
bf

(α) (t)

and

bf
(α) (b) = lim

t→b−
bf

(α) (t) .

Note that if f is differentiable then f
(α)
a (t) = (t− a)

1−α
f ′ (t) and bf

(α) (t) = − (b− t)1−α
f ′ (t) where f ′ (t)

stands for first order derivative of f (t) .

In this paper, the left conformable derivative f
(α)
a (t) is usually used which satisfies all the basic properties

given by the following theorem (see [1, 36, 40]):

Theorem 2.2. Let f and g be α−differentiable functions for 0 < α ≤ 1. Then,

(1) (cf + dg)
(α)
a (t) = cf

(α)
a (t) + dg

(α)
a (t) for all c, d ∈ R.

(2) (fg)
(α)
a (t) = f

(α)
a (t) g (t) + f (x) g

(α)
a (t) .

(3) (f/g)
(α)
a (t) =

(
f

(α)
a (t) g (t)− f (t) g

(α)
a (t)

)
/g2 (t).

(4) (λ)
(α)
a = 0, for all constant functions f (t) = λ.

(5) ((t− a)
p
)
(α)
a = p (t− a)

p−α
for all p ∈ R.

(6) (f ◦ g)
(α)
a (t) = f

(α)
a (g (t)) g

(α)
a (t) gα−1 (t) .

In the following, we provide all of the necessary theorem and definitions that we use in our formulations.

Definition 2.3 (Sequential conformable derivative [1]). Let f : [a, b] → R such that f (n) (t) exists and
continuous, 0 < α ≤ 1 and n ∈ N+, then the left sequential conformable derivative of order n is defined by

nf (α)
a (t) =

dαa
dtαa

dαa
dtαa

...
dαa
dtαa︸ ︷︷ ︸

n−times

f (t) . (2.3)
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Definition 2.4 (Conformable Taylor series expansion [1]). Let f is an infinitely α−differentiable function for
some 0 < α ≤ 1 at a neighborhood of a point t0. Then f has the conformable Taylor series expansion:

f (t) = f (t0) + f (α)
a (t0)

(t− t0)
α

α
+ 2f (α)

a (t0)
(t− t0)

2α

2!α2
+ . . .+ nf (α)

a (t0)
(t− t0)

nα

n!αn
+ . . . (2.4)

where t ∈
(
t0, t0 +R1/α

)
for R > 0.

Definition 2.5 (Conformable partial derivative [18]). Let f be a function with m variables x1, x2, . . . , xm then
the conformable partial derivative of f with respect to xi of order 0 < α ≤ 1 is defined by

∂α

∂xαi
f (x1, x2, . . . , xm) = lim

ε→0

f
(
x1, . . . , xi−1, xi + εx1−α

i , . . . , xm
)
− f (x1, . . . , xm)

ε
. (2.5)

Definition 2.6 (Conformable integral [1]). The left conformable integral of order 0 < α ≤ 1 starting from
a ∈ R of a function f is defined by

Iαa f (t) =

t∫
a

f (x) dαax =

t∫
a

f (x) (x− a)
α−1

dx (2.6)

and the right conformable integral of order 0 < α ≤ 1 terminating at b ∈ R of function f is defined

bI
αf (t) =

b∫
t

f (x)b dαx =

b∫
t

f (x) (b− x)
α−1

dx. (2.7)

Theorem 2.7 (Integration by parts [1]). Let f, g : [a, b]→ R be two functions such that fg differentiable. Then,

b∫
a

f (t) g(α) (t) dαa t = f (t) g (t)
b

|
a
−

b∫
a

g (t) f (α)
a (t) dαa t. (2.8)

3. Conformable variational calculus with transversality
condition

The conformable variational calculus introduced by [29] can be defined as to find the minimizing (or max-
imizing) curve of a conformable or classical variational integral contains at least one conformable derivative
term. We consider the following conformable variational calculus problem defined as

J (x) =

b∫
a

F
(
t, x (t) , x(α)

a (t)
)

dαa t (3.1)

where F : [a, b] → R is the Lagrangian from the class of Cα−function in each of its argument, x = x (t) is an
unknown Cα−function on the interval [a, b] and

x (a) = xa and x (b) = xb (3.2)
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are endpoints for xa, xb ∈ R. Note that, if α = 1, then the conformable variational calculus problem coincides
to the classical one. The necessary concepts to solve the conformable variational calculus problem are depicted
below.

Definition 3.1. Functions x that are Cα and satisfy the endpoint conditions equation (3.2) are called admissible
functions.

Definition 3.2. Let 0 < α ≤ 1, x∗ (t) is a minimizing curve and x (t) is an admissible function. If there exist
small numbers ε1 and ε2 such that

|x∗ (t)− x (t) | < ε1 and |x∗(α) (t)− x(α) (t) | < ε2, for all tε [a, b] (3.3)

then x (t) is said to be a weak variation of x∗ (t) . For the calculation purpose, the weak variation of x (t) can be
alternatively written in the form of x (t) = x∗ (t) + εαη (t), where ηεCα [a, b] is a perturbation function satisfies
η (a) = η (b) = 0.

Lemma 3.3 (Fundamental lemma for conformable calculus of variation [40]). Let 0 < α ≤ 1 and, µ and η be
continuous functions on [a, b]. If for any ηεCα [a, b] with η (a) = η (b) = 0,

b∫
a

µ (t) η (t) dαa t = 0 (3.4)

then for all tε [a, b]

µ (t) = 0. (3.5)

The following theorem proved by [40] presents the conformable Euler–Lagrange equation for fixed endpoints.

Theorem 3.4 (The conformable fractional Euler–Lagrange Eq. [40]). Let J be a functional in the form of
equations (3.1)–(3.2) for 0 < α ≤ 1, FεCα

(
[a, b]× R2

)
and x : [a, b] → R be an α−differentiable function. If

x (t) is a minimizer (or maximizer) of J , then x (t) satisfies the following conformable Euler–Lagrange equation:

∂F

∂x
− dαa

dtαa

(
∂F

∂x
(α)
a

)
= 0. (3.6)

When one or two endpoints are missing, we need some additional conditions known as transversality con-
ditions to solve the conformable Euler–Lagrange equation. By the following theorem, we will propose the
transversality conditions of the conformable variational calculus.

Theorem 3.5 (Transversality conditions for conformable variational calculus). Let x : [t0, tf ] → R be an
α−differentiable function and F is a function in the class of Cα

(
[t0, tf ]× R2

)
for 0 < α ≤ 1. If x (t) is a

minimizer of

J (x) =

tf∫
t0

F
(
t, x (t) , x

(α)
t0 (t)

)
dαt0t, (3.7)
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when x (t0) = x0 (x0εR) is fixed but x (tf ) lies on a some given curve x = γ (t) , then the general transversality
condition is

F
(
tf , x (tf ) , x

(α)
t0 (tf )

)
∆τα +

∂F

∂x
(α)
t0

|
tf

η (tf ) = 0, (3.8)

where η ∈ Cα
(
[t0, tf ]× R2

)
and ∆τ are perturbations for the weak variation of x and tf , respectively.

Proof. Let x∗ (t) is a minimizing curve which intersects with the target curve γ (t) at t = t∗f . To find the optimal
solution, first of all we assume the following weak variations for |ε| � 1

x (t) = x∗ (t) + εαη (t) ,

x
(α)
t0 (t) = x

∗(α)
t0 (t) + εαη

(α)
t0 (t) ,

tf = t∗f + ε∆τ,

where η (t0) = 0 and η (tf ) 6= 0 since tf is free. Then the variation of J is calculated as

∆J =

t∗f+ε∆τ∫
t0

F
(
t, x (t) , x

(α)
t0 (t)

)
dαt0t−

t∗f∫
t0

F
(
t, x∗ (t) , x

∗(α)
t0 (t)

)
dαt0t (3.9)

which can be arranged in the following form

∆J =

t∗f+ε∆τ∫
t∗f

F
(
t, x (t) , x

(α)
t0 (t)

)
dαt∗f t

+

t∗f∫
t0

(
F
(
t, x (t) , x

(α)
t0 (t)

)
− F

(
t, x∗ (t) , x

∗(α)
t0 (t)

))
dαt0t.

When the function F is expanded to the Taylor series according to the pair of variables
(
εαη, εαη

(α)
t0

)
near the

point
(
x∗, x

∗(α)
t0

)
for t ∈ [t0, tf ] and then the expansion is substituted in ∆J leads to

∆J =

t∗f+ε∆τ∫
t∗f

(
F
(
t, x∗ (t) , x

∗(α)
t0 (t)

)
+
∂F

∂x
εαη (t) +

∂F

∂x
(α)
t0

εαη
(α)
t0 (t)

)
dαt∗f t

+

t∗f∫
t0

(
F
(
t, x∗ (t) , x

∗(α)
t0 (t)

)
+
∂F

∂x
εαη (t) +

∂F

∂x
(α)
t0

εαη
(α)
t0 (t)− F

(
t, x∗ (t) , x

∗(α)
t0 (t)

))
dαt0t+O

(
ε2α
)
.
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By calculating the first integral, we obtain the following equation

∆J =

(
F
(
t∗f , x

∗ (t∗f) , x∗(α)
t0

(
t∗f
))

+
∂F

∂x
|
t∗f

εαη
(
t∗f
)

+
∂F

∂x
(α)
t0

|
t∗f

εαη
(α)
t0

(
t∗f
))

εα∆τα

+

t∗f∫
t0

(
∂F

∂x
εαη (t) +

∂F

∂x
(α)
t0

εαη
(α)
t0 (t)

)
dαt0 +O

(
ε2α
)

.

Using the integration by parts formula equation (2.8), we get the first variation denoted by δ as

δJ = F
(
t∗f , x

∗ (t∗f) , x∗(α)
t0

(
t∗f
))

∆τα +
∂F

∂x
(α)
t0

|
t∗f

η
(
t∗f
)

+

t∗f∫
t0

η (t)

(
∂F

∂x
− dαa

dtαa

(
∂F

∂x
(α)
t0

))
dαt0t = 0. (3.10)

The last integral vanishes because of the conformable Euler–Lagrange equation and the transversality condition
of conformable variational calculus is achieved as

F
(
t∗f , x

∗ (t∗f) , x∗(α)
t0

(
t∗f
))

∆τα +
∂F

∂x
(α)
t0

|
t∗f

η
(
t∗f
)

= 0. (3.11)

In order to find the values of the unknown arbitrary functions of η
(
t∗f

)
and ∆τα in equation (3.8), the

transversality conditions in particular cases will be investigated.

Corollary 3.6 (Conformable variational calculus for specialized transversality conditions). First of all, consider
the weak variation of x (t) = x∗ (t) + εαη (t) at t = tf = t∗f + ε∆τ and expand the right hand side of this variation
in a conformable Taylor series with respect to ε∆τ near the point t∗f :

x (t) = x∗
(
t∗f + ε∆τ

)
+ εαη

(
t∗f + ε∆τ

)
= x∗

(
t∗f
)

+
x
∗(α)
t∗f

(
t∗f

)
α

εα∆τα + εαη
(
t∗f
)

+O
(
ε2α
)
. (3.12)

Since it is assumed that x (t) intersects with the target curve γ (t) at t = tf , we also need the expansion of

γ
(
t∗f + ε∆τ

)
in a Taylor series with respect to ∆τ about the point t∗f

γ
(
t∗f + ε∆τ

)
= γ

(
t∗f
)

+
γ

(α)
t∗f

(
t∗f

)
α

εα∆τα +O
(
ε2α
)
. (3.13)

Ignoring the remainder terms of O
(
ε2α
)

and equating these two expansions give the subsequent relation:

x∗
(
t∗f
)

+
x
∗(α)
t∗f

(
t∗f

)
α

εα∆τα + εαη
(
t∗f
)

= γ
(
t∗f
)

+
γ

(α)
t∗f

(
t∗f

)
α

εα∆τα. (3.14)

Therefore, the perturbation function is acquired from equation (3.14) as

η
(
t∗f
)

=
γ

(α)
t∗f

(
t∗f

)
− x∗(α)

t∗f

(
t∗f

)
α

∆τα. (3.15)
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Substituting equation (3.15) into equation (3.11) gives the following transversality condition:

F (t∗f , x∗ (t∗f) , x∗(α)
t0

(
t∗f
))

+
∂F

∂x
(α)
t0

|
t∗f

γ(α)
t∗f

(
t∗f

)
− x∗(α)

t∗f

(
t∗f

)
α

∆τα = 0.

Because ∆τα is an arbitrary function, the transversality condition is finally achieved as

F
(
t∗f , x

∗ (t∗f) , x∗(α)
t0

(
t∗f
))

+
∂F

∂x
(α)
t0

|
t∗f

γ(α)
t∗f

(
t∗f

)
− x∗(α)

t∗f

(
t∗f

)
α

 = 0. (3.16)

According to equation (3.16), three types of transversality conditions will be examined in below.

A. Terminal curve:
If the terminal point x (tf ) belongs to an α−differentiable target curve γ, means x (tf ) = γ (tf ), then the

transversality condition is obtained as:

F
(
tf , x (tf ) , x

(α)
t0 (tf )

)
+

∂F

∂x
(α)
t0

|
tf

(
γ

(α)
tf

(tf )− x(α)
tf

(tf )

α

)
= 0. (3.17)

This condition is the transversality condition in the most general sense for conformable variational calculus.

B. Vertical terminal line (fixed-time horizon problem):
If tf is fixed and x (tf ) is free means the target curve is a straight line perpendicular to the x axis whose slope

γ (tf ) is infinite, then the transversality condition for infinite γ
(α)
tf

(tf ) is deduced as

1

α

∂F

∂x
(α)
t0

|
tf

= 0 (3.18)

which is referred to as the “natural boundary condition” because of their natural arising in variational formula-
tion.

C. Horizontal terminal line (fixed-endpoint problem):

If x (tf ) is fixed and tf is free, means x (tf ) = γ (tf ) = c and γ
(α)
tf

(tf ) = 0, then the transversality condition
is obtained as

F
(
tf , x (tf ) , x

(α)
t0 (tf )

)
−
x

(α)
tf

(tf )

α

∂F

∂x
(α)
t0

|
tf

= 0. (3.19)

Now, we give a conformable variational problem whose integer order versions can be found in [45].

Example 3.7. Find the minimum of

J (x) =

tf∫
0

(
x

(α)
0 (t)

)2

dα0 t (3.20)
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for each of the following cases: (i) x (0) = 1, x (tf ) = 2; (ii) x (0) = 1, tf = 2; (iii) x (0) = 1 and x (tf ) lies on

the curve γ (t) = 2 + (tα − 1)
2
.

Solution. The conformable Euler–Lagrange equation in the sequential form 2x
(α)
0 (t) = 0 has two-fold roots

of r1,2 = 0. Therefore, the solution is as x (t) = Atαe0 +Be0, see [16]. The unknown coefficient B is determined
from the initial condition x (0) = 1 as B = 1 which leads to

x (t) = Atα + 1. (3.21)

Case (i) Since tf is unspecified and x (tf ) = 2, the transversality condition equation (3.19) gives A = ±
√

2
α .

Therefore, the extremals should be either
√

2
α t
α or −

√
2
α t
α with

√
2
α t
α
f = 1 or −

√
2
α t
α
f = 1 via x (tf ) = 2. The

second one has no positive solution for tf . Thus, the extremal is

x (t) =

√
2

α
tα + 1

with

tf =

(√
α

2

) 1
α

.

Case (ii) Since x (tf ) is unspecified and tf = 2 the appropriate transversality condition is equation (3.18)

which gives x
(α)
0 (2) = 0, so A = 0. The extremal is

x (tf ) = 1

and

x (2) = 1.

0 0.5 1 1.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t (time)

x
(t

) 
(s

ta
te

)

x(t)

γ(t)

Figure 1. Minimizing curve which reaches target curve at tf = 1.5598.
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Case (iii) Since x (t) function is not known at the unspecified endpoint tf , the values of tf and A are found
from the equality of x (tf ) = γ (tf ) and the transversality condition equation (3.17) as

Atαf −
(
tαf − 1

)2 − 1 = 0, (3.22)

(Aα)
2

+ 2Aα
(

2
(
tαf − 1

)2−α −A) = 0.

These equations are solved for the chosen value of α = 0.7 by using symbolic toolbox of MATLAB. The solutions
are then obtained as tf = 1.5598 and A = 0.8302. Figure 1 is also plotted by MATLAB.

4. Conformable optimal control problem with transversality
condition

The conformable optimal control problem firstly examined by [40] can be defined as to find a pair of functions
(x (.) , u (.)) that minimizing (or maximizing) of a performance index defined by a conformable or classical
integral subject to a conformable dynamic constraints. In this study, we consider the conformable optimal
control problem defined as

J (x, u) =

b∫
a

F (t, x (t) , u (t)) dαa t (4.1)

which is subjected to the conformable dynamical system

x(α)
a (t) = g (t, x (t) , u (t)) , (4.2)

where x and u are the state and control functions, respectively. We assume that the Lagrangian F and the
function g are the functions at least from the Cα class in their domain

(
[a, b]× R2

)
for 0 < α ≤ 1. Also, the

admissible state functions x (t) are such that x
(α)
a (t) exists. The pair (x (.) , u (.)) that minimizes the performance

index equation (4.1) subjected to equation (4.2) is called as an optimal process. It is worth to note that for
α = 1, conformable optimal control problem coincides to classical optimal control problem.

The necessary optimality conditions were obtained by [40] from the conformable Hamiltonian formalism can
be given as

x(α)
a (t) =

∂H

∂λ
(t, x, u, λ) (state)

λ(α)
a (t) = −∂H

∂x
(t, x, u, λ) (costate) (4.3)

∂H

∂u
(t, x, u, λ) = 0 (control)

where

H (t, x, u, λ) = −F (t, x, u) + λ (t) g (t, x, u) (4.4)

is the Hamiltonian function and λ is an α-differentiable function known as Lagrange multiplier.
Now, we will give the transversality condition of the conformable optimal control problem by the following

theorem.
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Theorem 4.1 (Transversality conditions for conformable optimal control). Let x : [t0, tf ] → R is an
α−differentiable function, F and g are functions in the class of Cα

(
[t0, tf ]× R2

)
for 0 < α ≤ 1. If (x (t) , u (t))

is a minimizer of

J (x, u) =

tf∫
t0

F (t, x (t) , u (t)) dαt0t (4.5)

subject to the system dynamics constraint

x
(α)
t0 (t) = g (t, x (t) , u (t)) (4.6)

when x (t0) = x0 is fixed, and x (tf ) = xf is free. Then the general transversality condition is

[
−H (tf , x (tf ) , u (tf )) + λ (tf )x

(α)
t0 (t)

]
∆τα + λ (tf ) η (tf ) = 0, (4.7)

where η ∈ Cα
(
[t0, tf ]× R2

)
and ∆τ are perturbations for the weak variation of x and tf , respectively.

Proof. Suppose that x∗ (t) is a minimizing curve which intersects with the target curve γ (t) at t = t∗f . To find
the optimal solution for state, control and costate functions at tε [t0, tf ] assume the following weak variations
for |ε| � 1

x (t) = x∗ (t) + εαη (t) ,

x
(α)
t0 (t) = x

∗(α)
t0 (t) + εαη

(α)
t0 (t) ,

u (t) = u∗ (t) + εαξ (t) , (4.8)

λ (t) = λ∗ (t) + εαΛ (t) ,

tf = t∗f + ε∆τ,

where η (t) , η
(α)
t0 (t) , ξ (t) ,Λ (t) and ∆τ are perturbations for the weak variation of x (t) , x

(α)
t0 (t) , u (t) , λ (t) and

tf , respectively. Note that η (t0) = 0 and η (tf ) 6= 0 since tf is free. To use the method of Lagrange multipliers
technique, the performance index can be defined as:

I (x, u, λ) =

tf∫
t0

F (t, x (t) , u (t)) dαt0t+

tf∫
t0

λ (t)
(
x

(α)
t0 (t)− g (t, x (t) , u (t))

)
dαt0t. (4.9)

For the sake of easy computations, the conformable integrals in equation (4.9) will be examined separately, the
first one is obviously J and the second one is denoted by Φ. Assume that x∗ (t) and u∗ (t) are the optimum
functions of the problem equations (4.5)–(4.6), then the variation of J and Φ are respectively given as follows,

∆J =

t∗f+ε∆τ∫
t∗f

F (t, x (t) , u (t)) dαt∗f t+

t∗f∫
t0

(F (t, x (t) , u (t))− F (t, x∗ (t) , u∗ (t))) dαt0t, (4.10)
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∆Φ =

t∗f+ε∆τ∫
t∗f

λ (t)
(
x

(α)
t0 (t)− g (t, x (t) , u (t))

)
dαt∗f t+

t∗f∫
t0

λ (t)
(
x

(α)
t0 (t)− g (t, x (t) , u (t))

)
dαt0t

−

t∗f∫
t0

λ∗ (t)
(
x
∗(α)
t0 (t)− g (t, x∗ (t) , u∗ (t))

)
dαt0t. (4.11)

The functions F and g in equations (4.10)–(4.11) are expanded in a Taylor series according to the pair of
variables (εαη, εαξ) near the point (x∗, u∗) for tε [t0, tf ] gives

∆J =

t∗f+ε∆τ∫
t∗f

(
F (t, x∗ (t) , u∗ (t)) +

∂F

∂x
εαη (t) +

∂F

∂u
εαξ (t)

)
dαt∗f t

+

t∗f∫
t0

(
F (t, x∗ (t) , u∗ (t)) +

∂F

∂x
εαη (t) +

∂F

∂u
εαξ (t)− F (t, x∗ (t) , u∗ (t))

)
dαt0t+O

(
ε2α
)
, (4.12)

∆Φ =

t∗f+ε∆τ∫
t∗f

(λ∗ (t) + εαΛ (t))

(
x
∗(α)
t0 (t) + εαη

(α)
t0 (t)−

(
g (t, x∗ (t) , u∗ (t)) +

∂g

∂x
εαη (t) +

∂g

∂u
εαξ (t)

))
dαt∗f t

+

t∗f∫
t0

(λ∗ (t) + εαΛ (t))

(
x
∗(α)
t0 (t) + εαη

(α)
t0 (t)−

(
g (t, x∗ (t) , u∗ (t)) +

∂g

∂x
εαη (t) +

∂g

∂u
εαξ (t)

))
dαt0t

−

t∗f∫
t0

λ∗ (t)
(
x
∗(α)
t0 (t)− g (t, x∗ (t) , u∗ (t))

)
dαt0t+O

(
ε2α
)
. (4.13)

The first variations of equations (4.12) and (4.13) are respectively obtained as

δJ = F
(
t∗f , x

∗ (t∗f) , u∗ (t∗f))∆τα +

t∗f∫
t0

(
∂F

∂x
η (t) +

∂F

∂u
ξ (t)

)
dαt0t = 0, (4.14)

δΦ = λ∗
(
t∗f
) (
x
∗(α)
t0

(
t∗f
)
− g

(
t∗f , x

∗ (t∗f) , u∗ (t∗f)))∆τα

+

t∗f∫
t0

((
λ∗ (t)

(
η

(α)
t0 (t)−∂g

∂x
η (t)−∂g

∂u
ξ (t)

)
+Λ (t)

(
x
∗(α)
t0 (t)−g (t, x∗ (t) , u∗ (t))

)))
dαt0t = 0. (4.15)
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Using integration by parts formula equation (2.8) for equation (4.15) and then aggregating δJ and δΦ gives the
following equation in the Hamiltonian form

δJ + δΦ =
(
−H

(
t∗f , x

∗ (t∗f) , u∗ (t∗f))+ λ∗
(
t∗f
)
x
∗(α)
t0

(
t∗f
))

∆τα +

t∗f∫
t0

η (t)

(
−λ∗(α)

t0 (t)− ∂H

∂x

)
dαt0t

+

t∗f∫
t0

ξ (t)

(
∂H

∂u

)
dαt0t (t) +

t∗f∫
t0

Λ (t)
(
x
∗(α)
t0 (t)−g (t, x∗ (t) , u∗ (t))

)
dαt0t+λ

∗ (t∗f) η (t∗f)=0. (4.16)

Since the necessary optimality conditions equation (4.3), the integral vanishes and then the transversality
condition of the conformable optimal control problem is achieved as(

−H
(
t∗f , x

∗ (t∗f) , u∗ (t∗f))+ λ∗
(
t∗f
)
x
∗(α)
t0

(
t∗f
))

∆τα + λ∗
(
t∗f
)
η
(
t∗f
)

= 0. (4.17)

The unknown arbitrary functions of η
(
t∗f

)
and ∆τα in formula can be specialized with the transversality

conditions in particular cases given below.

Corollary 4.2 (Conformable optimal control for specialized transversality conditions). As a result
of the conformable Taylor series expansions of the functions x (t) and γ (t), the perturbation function is again
obtained with the similar process in Section 3 (see Eqs. (3.12)–(3.14)) as

η
(
t∗f
)

=
γ

(α)
t∗f

(
t∗f

)
− x∗(α)

t∗f

(
t∗f

)
α

∆τα.

Therefore, by substituting η
(
t∗f

)
in equation (4.17), we get

δJ + δΦ =

−H (t∗f , x∗ (t∗f) , u∗ (t∗f))+ λ∗
(
t∗f
)
x
∗(α)
t0

(
t∗f
)

+ λ∗
(
t∗f
)γ(α)

t∗f

(
t∗f

)
− x∗(α)

t∗f

(
t∗f

)
α

∆τα = 0.

Because ∆τα is an arbitrary function, the transversality condition is finally achieved in the following form:

−H
(
t∗f , x

∗ (t∗f) , u∗ (t∗f))+ λ∗
(
t∗f
)
x
∗(α)
t0

(
t∗f
)

+ λ∗
(
t∗f
)γ(α)

t∗f

(
t∗f

)
− x∗(α)

t∗f

(
t∗f

)
α

 = 0. (4.18)

According to this equation three types of transversality conditions are examined as in below.

A. Terminal curve: If the terminal point x (tf ) belongs to an α−differentiable target curve γ, means x (tf ) =
γ (tf ), then the transversality condition is obtained as:

−H (tf , x (tf ) , u (tf )) + λ (tf )x
(α)
t0 (tf ) + λ (tf )

(
γ

(α)
tf

(tf )− x(α)
tf

(tf )

α

)
= 0. (4.19)
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This condition is the transversality condition in the most general sense for conformable optimal control.

B. Vertical terminal line (fixed-time horizon problem):
If tf is fixed and x (tf ) is free, then the target curve is a straight line perpendicular to the x axis whose slope

γ (tf ) is infinite. Therefore, the transversality condition for infinite γ
(α)
tf

is achieved as

λ (tf ) = 0. (4.20)

C. Horizontal terminal line (fixed-endpoint problem):

If x (tf ) is fixed and tf is free, means x (tf ) = γ (tf ) = c and γ
(α)
tf

= 0, then the transversality condition is
obtained as

−H (tf , x (tf ) , u (tf )) + λ (tf )

(
x

(α)
t0 (tf )−

x
(α)
tf

(tf )

α

)
= 0. (4.21)

5. Conformable optimal control of a two-dimensional diffusion
system

To depict conformable transversality condition, we present an optimal control problem for a conformable
diffusion system which previously taken into account by Özdemir et al. [44] in Riemann–Liouville sense. By
using eigenfunction expansion method, the optimal control law is here achieved analytically while achieved
numerically in [44].

We aim to find the optimal process of the following optimal control problem defined by the performance
index

J (x, u) =
1

2

1∫
0

L∫
0

L∫
0

(
x2 (ζ, ρ, t) + u2 (ζ, ρ, t)

)
dζdρdα0 t (5.1)

subjected to the conformable dynamical system

x
(α)
0 (ζ, ρ, t) =

(
∂2x (ζ, ρ, t)

∂ζ2
+
∂2x (ζ, ρ, t)

∂ρ2

)
+ u (ζ, ρ, t) (5.2)

with the initial

x (ζ, ρ, 0) = 1 + ζ + ρ (5.3)

and the boundary conditions

∂x (0, ρ, t)

∂ζ
=
∂x (L, ρ, t)

∂ζ
=
∂u (ζ, 0, t)

∂ρ
=
∂u (ζ, L, t)

∂ρ
= 0, (5.4)

where x (ζ, ρ, t) is the state and u (ζ, ρ, t) is the control functions which depend on time t and the space

parameters (ζ, ρ) ε [0, L]× [0, L] and x
(α)
0 (ζ, ρ, t) represent the conformable derivative of state function of order

0 < α ≤ 1 with respect to t.
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Using the eigenfunctions φmn (ζ, ρ), m,n = 0, 1, 2, ...,∞, the state and the control functions can be written
as

x (ζ, ρ, t) =

∞∑
m=0

∞∑
n=0

xmn (t)φmn (ζ, ρ) (5.5)

u (ζ, ρ, t) =

∞∑
m=0

∞∑
n=0

umn (t)φmn (ζ, ρ) , (5.6)

where xmn (t) is the state and umn (t) is the control eigencoordinates. Applying the method of separation of
variables, it could be demonstrated that the eigenfunctions for the problem are obtained as

φmn (ζ, ρ) = cos

(
mπζ

L

)
cos
(nπρ
L

)
. (5.7)

For the simplicity, the upper limit of the indexes m and n is taken as a finite value demonstrated by k. If
the state and the control functions in equations (5.5) and (5.6) are substituting in the performance index, the
following form is achieved

J = −L
2

2

1∫
0

(
x2

00 (t) +

k∑
m=1

1

2
x2
m0 (t) +

k∑
n=1

1

2
x2

0n (t) +

k∑
m=1

k∑
n=1

1

4
x2
mn (t)

)
dα0 t

−L
2

2

1∫
0

(
u2

00 (t) +

k∑
m=1

1

2
u2
m0 (t) +

k∑
n=1

1

2
u2

0n (t) +

k∑
m=1

k∑
n=1

1

4
u2
mn (t)

)
dα0 t. (5.8)

Finally, writing equation (5.5) into equation (5.3), multiplying both sides by cos
(
mπζ
L

)
cos
(
nπρ
L

)
and integrating

via ζ, ρ from 0 to L, we get

xmn (0) =
1

L2


L2 + L3 m = 0,n = 0

2L3

n2π2 (cos (nπ)− 1) m = 0,n > 0
2L3

m2π2 (cos (mπ)− 1) m > 0,n = 0
0 m > 0,n > 0.

(5.9)

Using the above approximations, the Hamiltonian for the system can be defined as

H = −L
2

2

(
x2

00 (t) +

k∑
m=1

1

2
x2
m0 (t) +

k∑
n=1

1

2
x2

0n (t) +

k∑
m=1

k∑
n=1

1

4
x2
mn (t)

)

−L
2

2

(
u2

00 (t) +

k∑
m=1

1

2
u2
m0 (t) +

k∑
n=1

1

2
u2

0n (t) +

k∑
m=1

k∑
n=1

1

4
u2
mn (t)

)
(5.10)

−L
2

2

(
λ00 (t)u00 (t) +

k∑
m=1

k∑
n=1

λmn (t)

(
−
{(mπ

L

)2

+
(nπ
L

)2
}
xmn (t) + umn (t)

))
.

The necessary optimality conditions of the system are given as

State equation: x
(α)
0mn

(t) +

{(mπ
L

)2

+
(nπ
L

)2
}
xmn (t) + umn (t) = 0 (5.11)
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Costate equation:
L2

4
xmn (t) +

{(mπ
L

)2

+
(nπ
L

)2
}
λmn (t)− λ(α)

0mn
(t) = 0 (5.12)

Control equation: λmn (t)− L2

4
umn (t) = 0. (5.13)

When equations (5.11)–(5.13) are solved using the analytical method of conformable differential equations (see,
[54]), the state and the control functions are found as

umn (t) = cmn1 e−r
tα

α + cmn2 er
tα

α (5.14)

xmn (t) =

({(mπ
L

)2

+
(nπ
L

)2
}
− r
)
cmn1 e−r

tα

α +

({(mπ
L

)2

+
(nπ
L

)2
}

+ r

)
cmn2 er

tα

α , (5.15)

where ±r,
(
r =

√(
mπ
L

)2
+
(
nπ
L

)2
+ 1

)
are the roots of characteristic equation of conformable differential equa-

tion obtained from equations (5.11)–(5.12) and, cmn1 and cmn2 are the coefficients determined from the initial
and the transversality conditions. Because of fixed tf = 1 and free x (tf ), the transversality condition of the
problem is

λmn (1) = 0.

Also it is found from equation (5.13) that u (1) = 0. Therefore, the unknown coefficients of cmn1 and cmn2 are
calculated from the equations

umn (1) = cmn1 e−
r
α + cmn2 e

r
α = 0 (5.16)
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Figure 2. State and control coordinates for different values of α.
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Figure 3. State and control functions for α = 0.5, ζ = 0.5, ρ = 0.3.

and

xmn (0) =

({(mπ
L

)2

+
(nπ
L

)2
}
− r
)
cmn1 +

({(mπ
L

)2

+
(nπ
L

)2
}

+ r

)
cmn2 , (5.17)

by using symbolic toolbox of MATLAB.
To show the effect of order α on the optimal process, we choose the indexes m = n = 0 and L = 1 which gives

r = 1. Then, we plot the state x00 and the control u00 eigencoordinates for different values of α in Figure 2.
It can be seen from the left side of Figure 2 that the contribution of state eigencoordinates decrease while the
order of α is reduced form 1 to 0. It can be read as the behaviors of state eigencoordinates changes from normal
diffusion to subdiffusion. Also the effects of control eigencoordinates observed from the right side of Figure 2
increase parallel to state coordinates as expected. Finally, the state and the control functions are plotted for
α = 0.5 as a function of time by choosing ζ = 0.5 and ρ = 0.3 in Figure 3. Note that, we cut the series in
equations (5.5)–(5.6) after 5 terms to illustrate the last figure.

6. Summary

the transversality conditions of the problems both from conformable variational calculus and conformable
optimal control have been investigated and specialized for particular cases. To show the applications of the
formulations the optimal control problem of conformable diffusion process with free final time has been consid-
ered. The optimal control law is obtained by using Hamiltonian formalism and Lagrange multiplier technique.
Comparing the obtained results for conformable optimal control law via fractional optimal control law shows
that the conformable derivative gives the opportunity of analytical solutions while both types supply a similar
manner for the optimal control process. The transversality conditions for the generalized type that a perfor-
mance index defined with classical integral whose integrand is containing conformable derivative term will be
discussed in the next study.
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