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FRACTIONAL ORDER MODEL OF IMMUNE CELLS INFLUENCED

BY CANCER CELLS

Esmehan Ucar1, Necati Özdemir1,* and Eren Altun2

Abstract. In this paper, we study the mathematical model of interaction cancer cells and immune
system cells presented Castiglione and Piccoli. As the interaction between cancer cells and the immune
system is weak, when the immune system of the body begins to decrease, the cancer cells get stronger
and increase rapidly. Helper CD4+ T and cytotoxic CD8+ T cells, cancer cells, dendritic cells and
cytokine interleukin-2 (IL-2) cells are involved in the mathematical model of this competition in the
living body. As can be seen in the literature, since the cancer cells have memory structure, fractional
models describe the struggle between the cancer cells and immune system give more meaningful results
than classical models as closer to the reality. The main motivation of the present work is to generalize
the model in Castiglione and Piccoli [J. Theor. Biol. 247 (2007) 723–732] by using Caputo fractional
derivative. The main aim is to analyze the behaviors of system cells by changing of the fractional
parameter. In this sense, we study on the stability analysis of treatment free and the fixed points of
the prescribed model. To get the numerical solutions, we apply the Adam-Bashforth-Moulton (ABM)
algorithm and also illustrate the results by the graphics held by Matlab program. We have reached the
excellent result that cancer cells decrease as θ diminishes in this process.
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1. Introduction

Cancer refers to a quite number of different diseases characterized by DNA damage that causes abnormal
cell growth. The malignant cancer cells have two important roles: first, they can no longer be divisible or
differentiated normally; second, they can invade surrounding tissues and go to distant places in the body [26].
The healthy body is well equipped to defend itself against cancer. Cancer can occur when the immune system and
other defense mechanisms fail [26]. The characteristic features of cancer are the rapid, uncontrolled proliferation
of cells and independent propagation in which secondary focus (metastases) occurs from the origin region. This
propagation happens by circulation of blood or lymphatic fluid, through unintentional transplantation from one
site to another during surgery, and neighborhood. As a result, cancer cells are different from normal cells in
terms of cell size, shape, number, differentiation, function, and ability to move to distant tissues [26].
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Tumors caused by uncontrolled cleavage and development in cells can be recognized by the immune system.
One of the normal functions of the immune system is to recognize and remove the malignant cells that acts in
the living body. Numerous antigens that form the immune response have been shown in many experimentally
generated tumors and in some cancer cases [22].

First, these antigens are restricted to two main groups according to their expression patterns: tumor-specific
antigens found in tumor cells and not found in any normal cells; and the tumor-associated antigens in tumor
cells and some normal cells. However, this classification is not excellent because it has been found that many
antigens that are thought to be tumor specific are also expressed by some normal cells. Modern classification
of tumor antigens is based on the molecular structures and sources [22].

The first attempts to simplify and characterize tumor antigens are based on the production of specific
monoclonal antibodies for tumor cells and the identification of antigens recognized by these antibodies. One of
the important developments in this field is the development of techniques to identify tumor antigens recognized
by cytotoxic T lymphocytes (CTLs), because CTLs are the main immune defense mechanisms against tumors.
CTLs recognize peptides originating from cytoplasmic proteins bound to the class I major histocompatibility
complex (MHC-1) molecules.

Neoplastic transformation is caused by genetic changes some of which are seen as non-self by the immune
system and cause cell surface antigen expression, The products of the modified protooncogenes and tumor
suppressor genes are synthesized in the cytoplasm of tumor cells and, like any other cytosolic protein, can enter
the pathway of MHC-1 antigen processing and be recognized by CD8+ T cells. Since these altered proteins are
not present in normal cells, they do not induce self-tolerance. Some cancer patients have CD4+ and CD8+ T
cells that respond to products of mutated oncogenes such as circulating RAS, p53, and BCR-ABL proteins [22].

Cytotoxic T lymphocytes have been shown to have a good anti-tumor effect on cytotoxic T cells that react
against tumor antigens in experimentally generated tumors. CTLs in humans play a protective role against
virus-associated neoplasms, and CTLs have been shown to be present in the blood of cancer patients and in
tumor infiltrations. CD4+ T cells typically recognize the 12–16 aa peptides whose length presented by MHC
class II molecules. These cells play a central role in the initiation and maintenance of adaptive immune responses.
The contribution of CD4+ T cells to anti-tumor immunity is complex [40]. CD4+ T cells help the activation
and proliferation of CD8+ T cells [8]. Although it has been demonstrated that both cell-mediated and humoral
immunity has anti-tumor activity, the basic mechanism of tumor immunity is the killing of tumor cells by
CD8+ CTLs. Cellular immune responses that protect against tumors are typically linked to CD8+ T cells.
However, CD4+ T cells also play a central role [40]. Human CD4+ T cells can recognize tissue-specific antigens,
common tumor antigens, and viral antigens caused by tumor transformation [40]. Natural killer (NK) cells are
lymphocytes that are capable of spontaneously destroying cells that are infected with a pathogen or that exhibit
foreign symptoms such as tumor cells [29]. NK cells are particularly effective against cells that show decreased
MHC expression. Following activation by IL-2, NK cells can disrupt various human tumors in vitro [29].

Dendritic cells (DC) are central regulators of the adaptive immune response and are required for T cell
mediated cancer immunity. In particular, anti-tumoral responses are based on the initiation of tumor antigens
to lymph nodes to activate cytotoxic T lymphocytes. DC maturation is required to provide co-stimulatory signals
to T cells, but DC maturation occurs in tumors, and it is insufficient to generate strong immunity especially in
the light of suppressive mechanisms in tumors [15].

Cytokine interleukin-2 (IL-2) is a four α-helix bundle cytokine of size 15.5 kDa. It is generated mainly by
CD4+ T cells as a result of the antigen stimulation response. However, NK is also produced by T cells, CD8+
cells, mast cells, and DCs. IL-2 has a strong T cell growth factor effect. It can also induce natural killer (NK)
cells, increase their cytolytic effects, and support many other immune system components needed to remove auto
reactive cells and maintain homeostasis. IL-2 administration has been reported to cause apparently curative
and persistent regressions in cancer patients [10].

Considering that there are many potential anti-tumor mechanisms, the strongest evidence for the presence of
immune control is the increased frequency of cancer in immunocompromised hosts. Approximately 5% of people
with congenital immunodeficiency develop cancer and this prevalence is 200 times greater than those with
immunocompatibility. The incidence of malignancy is increased in immunocompromised transplant recipients
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and AIDS patients [22]. The main problem in tumor biology is to understand factors affecting tumor growth
rate and the role of these factors in clinical course and response to therapy. The original transformed cell
(approximately 10 µm in diameter) should be folded in half by at least 30 populations to create 109 cells
(approximately 1 g in weight) which are the smallest clinically detectable mass [22]. However, in order to create
a tumor with a maximum size of 1012 cells (approximately 1 kg in weight) which is in comply with the life, only
10 additional cleavage cycles are required. These are the minimum estimates based on the assumption that all
strains of transformed cells retain their cleavage ability and that there is no loss of cells in the replicative pool.

The growth rate of a tumor is determined by three main factors: the duration of tumor cells doubling, the
fraction of tumor cells in the replicative pool, and the rate of spillage and loss of cells in the growing lesion. As
cell cycle control is eliminated in most tumors, tumor cells enter the cycle more easily and without the usual
limitations. In contrast, dividing cells do not have to complete the cycle faster than normal cells. In fact, the
total cell cycle time of most tumors is the same or longer as the equivalent normal cell. So, it can be said that
tumor growth is not related to shortening of cell cycle time. The cell cycle of fast growing tumors is high, which
emphasizes the high rates of proliferation and apoptosis. Therefore, proliferation rate should be higher than
apoptosis for tumor growth [22].

In the recent years, an increasing interest has been shown by the researchers to introduce mathematical
models for diseases because the diseases lead to serious social problems [7, 21, 30, 32, 34, 35, 37]. In this sense,
some references related to immune system and tumor growth models can be given [11, 20, 23, 33]. de Pillis et al.
[33] analyzed the model of competition of tumor and the immune system. Many of tumor growth models concern
natural killer cells, CD4+ T cells, CD8+ T cells in the immune system cells. There are a few models dealing
with dendritic cells (DC) and IL-2 whereas DC play a crucial role at the beginning the cancer and coordinating
of the immune system cells such as T cells. Dendritic cells are the most important cells that allow the release
of antigens [22]. IL-2 induces the increase of T-lymphocyte cells stimulate by the antigens and also activates
macrophages that swallow foreign substances in the body. That’s why, DC and IL-2 are the most important
part of the immune system. In addition, memory T cells are made up of active effect T cells and the duty in the
body is to detect the antigens and give an immunological response in a short time when they meet the antigenic
stimuli [24]. Castiglione and Piccoli [9] proposed the ordinary differential equation (ODE) model that involves
the immune system cells, DC and IL-2.

Fractional calculus is a powerful tool to describe the memory and hereditary properties of the complex
natural phenomena [3, 13, 17–19, 31]. The well-known Riemann-Liouville, Grünwald-Letnikov and Caputo
operators have been successfully used to model the anomalous structures in many real world applications.
Note that the characteristic property of differential equations (classical and fractional) is the need of spec-
ified initial or boundary conditions to guarantee the uniqueness of the solutions [14]. In this sense, Caputo
fractional derivative is more preferred than the Riemann-Liouville because it leads to physically interpretable
initial conditions. Therefore, we generalize the model studied in [9] by using Caputo fractional derivative.
Adam-Bashforth-Moulton type predictor-corrector scheme is one of the basic methods for solving fractional
derivatives and it has an important place in the Caputo derivative because the initial conditions are required.
The main motivation of this work is to research numerical solutions of fractional model which describes the
behavior immune system under the effect of cancer cells. For this purpose, we apply the ABM algorithm
and illustrate the results by graphics and give stability analysis of treatment free and fixed points of the
model.

2. Preliminaries

Definition 2.1. Caputo derivatives are given in [36] as:

C
0 D

θ
t g (t) =

1

Γ (k − θ)

t∫
0

(t− λ)
k−θ−1

g(k) (λ) dλ
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where g (t) is a function and θ, (k − 1 < θ < k, k ∈ Z) is the order of the derivative.

ABM type predictor-corrector scheme to solve nonlinear fractional differential equations (FDE) was first
proposed by Diethelm et al. [12]. Recently, Baskonus et al. [4, 5] have applied this method to economic systems
and some equations, Mekkaoui et al. [27] have investigated the chaotic systems. The problem is based upon the
following initial-value problem:

Dθ
t z (t) = w(t, z(t)), 0 ≤ t ≤ T

z(k) (0) = z
(k)
0 , k = 0, 1, . . . ,m− 1, (2.1)

where m = [θ] . The equation in equation (3.8) is equivalent to the Volterra integral equation

z (t) =

[θ]−1∑
k=0

z
(k)
0

tk

k!
+

1

Γ (θ)

∫ t

0

(t− s)θ−1w (s, z (s)) ds. (2.2)

The ABM type predictor–corrector method is applied to get the numerical integration in equation (2.2):

z` (tm+1) =

m−1∑
k=0

z
(k)
0

tk

k!
+

`θ

Γ (θ + 2)
w (tm+1, z

p
` (tm+1)) +

`θ

Γ (θ + 2)

m∑
j=0

xj,m+1w (tm+1, z` (tm+1)) (2.3)

where

xj,m+1 =


mθ+1 − (m− θ) (m+ 1) ,

(m− j + 2)
θ+1

+ (m− j)θ+1 − 2 (m− j + 1)
θ+1

,
1,

j = 0,
1 ≤ j ≤ m,
j = m+ 1.

The predictor is given as follow:

zp` (tm+1) =

[θ]−1∑
k=0

z
(k)
0

tk

k!
+

1

Γ (θ)

m∑
j=0

yj,m+1w (tj , z` (tj)) , (2.4)

where

yj,m+1 =
`θ

θ
(m− j + 1)

θ − (m− j)θ , 0 ≤ j ≤ n.

` =
T

M
, tm = mh,m = 0, 1, 2, . . . ,M.

3. Fractional order model and free equilibrium point

In this section, we propose the mathematical model of the relation between cancer cells and immune system
with Caputo FD. In addition, we explain the reality of the problem dynamics. Our fractional model is given as
follows:

C
0 D

θ
t E = αθ0 + βθ0DE

(
1− E

pθ0

)
− cθ0 E,

C
0 D

θ
t F = αθ1 + βθ1I (M +D)F

(
1− F

pθ1

)
− cθ1F,
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C
0 D

θ
t M = βθ2M

(
1− M

pθ2

)
− dθ2MF,

C
0 D

θ
t D = −dθ3DF,

C
0 D

θ
t I = βθ4DE − eθ4IF − cθ4I. (3.1)

where E,F,M,D, I denote CD4+ T cells, CD8+ T cells, myeloid cells, dendritic cells and IL-2, respectively.
The first equation shows the concentration of CD4+ T cells and the term αθ0 − cθ0E represents natality

and natural fatality rate of cells, respectively. The term βθ0DE(1 − E
pθ0

) represents helper CD4+ T cells upon

presentation of dendritic cells, pθ0 is the carrying capacity of CD4+ T cells. Dendritic cells are syringe into the
host cells long since loaded. The second equation describes the concentration of CD8+ T cells and αθ1 − cθ1F
denotes natality and natural fatality rate of cells, respectively. The term βθ1I(M + D)F (1 − F

pθ1
) models the

interaction between CD8+ T cells and cancer cells, dendritic cells and pθ1 is the carrying capacity of CD8+ T
cells. The third equation deals with the myeloid (tumor) cells and the term βθ2M(1− M

pθ2
) represents reproduction

and saturation of tumor cells, pθ2 is the carrying capacity of myeloid cells. We suppose that growth of tumor
cells is of logistic type and the law is based on experimental data [28]. The term −dθ2MF represents the rate
of tumor killed by CD8+ T cells. The fourth equation models the concentration of dendritic cells and the term
−dθ3DF represents the rate of dendritic cells (behave as an activatoron CD8+ T cells) killed by CD8+ T cells.
The last equation models dynamics of IL-2 and the term βθ4DE represents IL-2 increased due to dendritic and
CD4+ T cells. −eθ4IF represents the rot of IL-2 after the immune system response and −cθ4I represents the rate
of death cells.

To obtain free equilibrium points for fractional derivative model (3.1), firstly we write as follow:

αθ0 + βθ0DE

(
1− E

pθ0

)
− cθ0E = 0, (3.2)

αθ1 + βθ1I(M +D)F

(
1− F

pθ1

)
− cθ1F = 0, (3.3)

βθ2M

(
1− M

pθ2

)
− dθ2MF = 0, (3.4)

− dθ3DF = 0, (3.5)

βθ4DE − eθ4IF − cθ4I = 0. (3.6)

For the obtaining equilibrium points, from equation (3.5) DF = 0 because of dθ3 > 0. But F is not equal 0

because of αθ1 > 0 and we get D = 0. If we substitute D = 0, in the equations (3.2) and (3.6), we get E =
αθ

0

cθ0

and I = 0, respectively. If we substitute I = 0, in equation (3.3), we get F =
αθ

1

cθ1
.

From equation (3.4) M [βθ2(1 − M
pθ2

) − dθ2F ] = 0 with F =
αθ

1

cθ1
and I = 0. M [βθ2(1 − M

pθ2
) − dθ2F ] = 0 has two

solutions M = 0 and M = pθ2[1 − α1
θdθ2

βθ
2c

θ
2

]. So, the system has two equilibrium points P1 = (E1, F1,M1, D1, I1)
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and P2 = (E2, F2,M2, D2, I2) defined by

E1,2 =
αθ0
cθ0
, F1,2 =

αθ1
cθ1
, D1,2 = 0, I1,2 = 0, (3.7)

M1 = 0, M2 = pθ2

[
1− αθ1d

θ
2

βθ2c
θ
2

]
. (3.8)

Hence, we obtain

P1 =

(
αθ0
cθ0
,
αθ1
cθ1
, 0, 0, 0

)
and P2 =

(
αθ0
cθ0
,
αθ1
cθ1
, pθ2

[
1− αθ1d

θ
2

βθ2c
θ
2

]
, 0, 0

)
. (3.9)

Looking at equilibrium points, we can conclude that the tumor cells don’t disappear over time at P1 and
disappear at P2.

The stability of P1 and P2 can be deduced by the eigenvalues of the system Jacobian matrix J(P ).

J(P)=


βθ0D(1− 2E/pθ0)− cθ0 0 0 βθ0E(1− E/pθ0) 0

0 bθ1I(M +D)(1− 2F/pθ1)− cθ1 βθ1IF (1− F/pθ1) βθ1F (1− F/pθ1) βθ1F (M +D)(1− F/pθ1)
0 −dθ2M βθ2(1− 2M/pθ2)− dθ2F 0 0
0 −dθ3D 0 −dθ3F 0

βθ4D −eθ4I 0 βθ4E −eθ4F − cθ4



We can say that, the stability of equilibrium points depend on αθ1d
θ
2 − βθ2cθ1. Thus, if αθ1d

θ
2 > βθ2c

θ
1, P1 is stable

and P2 is unstable. If αθ1d
θ
2 < βθ2c

θ
1, P1 is unstable and P2 is stable. It means that if αθ1d

θ
2 > βθ2c

θ
1, namely natality

and fatality rate of CD8+ T cells is greater than the rate of tumor reproduction, tumor cells are killed by CD8+
T cells. In this case, tumor-free equilibrium point and immune system is enough to fight tumor cells. We find
that by using the parameters in [9] the eigenvalues

λ
(1)
1 = −cθ0, λ

(1)
2 = −cθ1, λ

(1)
3 =

−(αθ1d
θ
2 − βθ2cθ1)

cθ1
,

λ
(1)
4 =

−αθ1dθ3
cθ1

, λ
(1)
5 =

−(αθ1e
θ
4 + cθ1c

θ
4)

cθ1
(3.10)

and

λ
(1)
1 = −cθ0, λ

(1)
2 = −cθ1, λ

(1)
3 =

(αθ1d
θ
2 − βθ2cθ1)

cθ1
,

λ
(1)
4 =

−αθ1dθ3
cθ1

, λ
(1)
5 =

−(αθ1e
θ
4 + cθ1c

θ
4)

cθ1
. (3.11)

Because all parameter are positive, we conclude that P1 is unstable and P2 is stable.
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4. Application of method and numerical results

Several numerical methods are suggested to solve fractional differential equations. In this section, we obtain
the numerical solutions of prescribed model using the ABM algorithm as follows:

Em+1 = E0 +
`θ

Γ (θ + 2)

(
αθ0 + βθ0D

p
m+1E

p
m+1

(
1−

Epm+1

pθ0

)
− cθ0E

p
m+1

)
+

`θ

Γ (θ + 2)

m∑
j=0

xj,m+1

(
αθ0 + βθ0DjEj

(
1− Ej

pθ0

)
− cθ0Ej

)
,

Fm+1 = F0 +
`θ

Γ (θ + 2)

(
αθ1 + βθ1I

p
m+1

(
Mp
m+1 +Dp

m+1

)
F pm+1

(
1−

F pm+1

pθ1

)
− cθ1F

p
m+1

)
+

`θ

Γ (θ + 2)

m∑
j=0

xj,m+1

(
αθ1 + βθ1Ij (Mj +Dj)Fj

(
1− Fj

pθ1

)
− cθ1Fj

)
,

Mm+1 = M0 +
`θ

Γ (θ + 2)

(
βθ2M

p
m+1

(
1−

Mp
m+1

pθ2

)
− dθ2M

p
m+1F

p
m+1

)
+

`θ

Γ (θ + 2)

m∑
j=0

xj,m+1

(
βθ2Mj

(
1− Mj

pθ2

)
− dθ2MjFj

)
,

Dm+1 = D0 +
`θ

Γ (θ + 2)

(
−dθ3D

p
m+1F

p
m+1

)
+

`θ

Γ (θ + 2)

m∑
j=0

xj,m+1

(
−dθ3DjFj

)
,

Im+1 = I0 +
`θ

Γ (θ + 2)

(
βθ4D

p
m+1E

p
m+1 − eθ4I

p
m+1F

p
m+1 − cθ4I

p
m+1

)
+

`θ

Γ (θ + 2)

m∑
j=0

xj,m+1

(
βθ4DjEj − eθ4IjFj − cθ4Ij

)
(4.1)

where

Epm+1 = E0 +
1

Γ (θ)

m∑
j=0

yj,m+1

(
αθ0 + βθ0DjEj

(
1− Ej

pθ0

)
− cθ0Ej

)
,

F pm+1 = F0 +
1

Γ (θ)

m∑
j=0

yj,m+1

(
αθ1 + βθ1Ij (Mj +Dj)Fj

(
1− Fj

pθ1

)
− cθ1Fj

)
,

Mp
m+1 = M0 +

1

Γ (θ)

m∑
j=0

yj,m+1

(
βθ2Mj

(
1− Mj

pθ2

)
− dθ2MjFj

)
,

Dp
m+1 = D0 +

1

Γ (θ)

m∑
j=0

yj,m+1

(
−dθ3DjFj

)
,

Ipm+1 = I0 +
1

Γ (θ)

m∑
j=0

yj,m+1

(
βθ4DjEj − eθ4IjFj − cθ4Ij

)
. (4.2)

To plot the graphics, we assume the initial values E0 = 0, F0 = 0, M0 = 1, D0 = 10, I0 = 0 only for
convenience. Physical parameters of the system are α0 = 10−4, β0 = 10−1, p0 = 1, c0 = 0.005, α1 = 10−4,
β1 = 10−2, p1 = 1, c1 = 0.005, β2 = 0.02, p2 = 1, d2 = 0.1, d3 = 0.1, β4 = 10−2, e4 = 10−7, c4 = 10−2 and
the graphics are obtained for the fractional order nonlinear system (3.1) with 0.7 ≤ θ < 1. As we understand
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Figure 1. Numerical simulations for CD4+ T cells which interact with tumor cells at time t.
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Figure 2. Numerical simulations for CD8+ T cells which interact with tumor cells at time t.

from the initial values, we offer dendritic cells and tumor cells to the system. Based on our observations, the
immune system cells respond to the dendritic cells. That is, CD4+ T cells, CD8+ T cells and IL-2 have reacted
to tumor cells. Approximately 100 hours later, the immune system cells take their maximum values CD4+ T
cells in Figure 1 and CD8+ T cells in Figure 2, while the tumor cells receive the smallest value in Figure 3.
After a while, the cells of the immune system (CD4+ T cells, CD8+ T cells and IL-2) begin to decrease because
the tumor cells decrease. Once the cells of immune system reduce to a certain point, the tumor cells begin to
grow and all of this process can be seen in Figures 1–6.

Also when θ = 0.98, we see that in Figure 1 and 2, the cells of immune system (CD4+ T cells and CD8+ T
cells) are suddenly grow and then rapidly decrease so the tumor cells almost grow to its starting point at last in
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Figure 3. Numerical simulations for myeloid (tumor) cells which interact with tumor cells at
time t.
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Figure 4. Numerical simulations for dendritic cells which interact with tumor cells at time t.

Figure 3. In Figures 1 and 2 when θ = 0.9 and θ = 0.8, memory T cells, become more active than when θ = 0.98
hence in Figure 3 when θ = 0.8, the tumor cells grow half as much as the initial point. One can observe that
dynamical behavior of fractional order nonlinear system (3.1) in Figure 6. In accordance with real life, when
the immune system is strong, we see that cancer cells grow less in Figures 1–6.

As seen in [1, 2, 6, 16, 25, 38, 39], one can observe that in Figures 1–6 of FDE system (3.1) reach a fixed
point in longer time.
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Figure 5. Numerical simulations IL-2 which interact with tumor cells at time t.
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Figure 6. Dynamical behavior of system in (3.1) at θ = 0.7.

5. Concluding remarks

In the present work, the integer order model [9] has been generalized by using Caputo fractional derivative
because the immune system and also the cancer cells have memory features. This model is specialized in dendritic
cells and IL-2 because they are important parts of the immune system. Moreover, the model examines how CD4+
T cells and CD8+ T cells fight with tumor cells. Then investigated free equilibrium points and stability of the
model with no treatment and we find two equilibrium points which one of is stable and the other is unstable.
This study is given numerical solution of the model with Adam-Bashforth-Moulton algorithm for fractional
order model, this numerical solution is newly implemented for the system in (3.1) and given some graphs to



FRACTIONAL ORDER MODEL OF IMMUNE CELLS INFLUENCED BY CANCER CELLS 11

visualize this solution. As shown in the graphs the interaction between cancer cells and immune system cells is
very strict, the change in one of the cells affects the other kind of cells.

The effectiveness of the cells of immune system are increasing in contrast, the effectiveness of tumor cells are
decreasing for different values of θ. It is seen that the small change in θ has great results and the approximate
solution depend on the fractional order θ. It has two reasons, either of them is the Caputo fractional derivative
is appropriate real-life problem that is, it gives good results in such problems, the other is Caputo fractional
derivative is non-local derivative.

References

[1] F.A. Abdullah, F. Liu, P. Burrage, K. Burrage and T. Li, Novel analytical and numerical techniques for fractional temporal
SEIR measles model. Numer. Algor. 79 (2017) 19–40.

[2] H. Al-Sulami, M. El-Shahed, J.J. Nieto and W. Shammakh, On fractional order dengue epidemic model. Math. Prob. Eng.
2014 (2014) 456537.

[3] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional calculus models and numerical methods, in Vol. 3 of Series
on Complexity, Nonlinearity and Chaos. World Scientific Publishing, Boston, MA (2012).
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