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Hülya Aytimur and Cihan Özgür

Abstract. We study cosymplectic-like statistical submersions. It is shown
that for a cosymplectic-like statistical submersion, the base space is a
Kähler-like statistical manifold and each fiber is a cosymplectic-like sta-
tistical manifold. We find the characterizations of the total and the base
spaces under certain conditions. Examples of cosymplectic-like statisti-
cal manifolds and their submersions are also given.
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1. Introduction and Preliminaries

Let M and N be two Riemannian manifolds. A Riemannian submersion F :
M → N is a mapping such that rankF∗ = boyN and F∗ preserves lengths of
horizontal vectors (see [3,5,7,9,14]). Recently, Abe and Hasegawa [1] studied
an affine submersion with horizontal distribution when the total space is a
statistical manifold.

Statistical manifolds with almost complex structure and its statistical
submersions, statistical submersion of the space of the multivariate normal
distribution, statistical manifolds with almost contact structures and its sta-
tistical submersions were studied in [10–12], respectively, by Takano.

Motivated by the above studies, in the present study, we consider
cosymplectic-like statistical submersions. The paper is organized as follows.
In Sect. 2, we give a brief introduction about statistical submersions. In
Sect. 3, we study cosymplectic-like statistical submersions. We prove that
for a cosymplectic-like statistical submersion, the base space is a Kähler-like
statistical manifold and each fiber is a cosymplectic-like statistical manifold.
We characterize the total and the base spaces under certain conditions. Exam-
ples of cosymplectic-like statistical manifolds and their submersions are also
given.
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Let M be a Riemannian manifold. Define a torsion-free affine connection
by ∇. The triple (M,∇, g) is called a statistical manifold if ∇g is symmetric
[2]. For a statistical manifold (M,∇, g), we define another affine connection
∇∗ by

Zg (X,Y ) = g (∇ZX,Y ) + g (X,∇∗
ZY ) (1.1)

for vector fields X,Y,Z on (M, g) [13]. The affine connection ∇∗ is called
conjugate (or dual ) of the connection ∇ w.r.t. g. The affine connection ∇∗

is torsion free, ∇∗g is symmetric and satisfies (∇∗)∗ = ∇. Clearly, (M,∇∗, g)
is a statistical manifold. Every Riemannian manifold (M,∇, g) with its Rie-
mannian connection ∇ is a trivial statistical manifold. We denote R and R∗

the curvature tensors on M with respect to the affine connection ∇ and its
conjugate ∇∗, respectively. Then we have

g (R (X,Y ) Z,W ) = −g (Z,R∗ (X,Y ) W ) (1.2)

for vector fields X,Y,Z and W on (M, g) [4].
In [10], Takano considered a semi-Riemannian manifold (M, g) with

almost complex structure J which has another tensor field J∗ of type (1, 1)
satisfying

g (JX, Y ) + g (X,J∗Y ) = 0 (1.3)

for vector fields X and Y on (M, g). Then (M, g, J) is called an almost
Hermite-like manifold [10]. It is easy to see that (J∗)∗ = J , (J∗)2 = −I
and g (JX, J∗Y ) = g (X,Y ) . Since J2 = −I, the tensor field J is not sym-
metric to g [10].

In [10], Takano considered statistical manifolds on almost Hermite-like
manifolds. If J is parallel with respect to ∇, then (M,∇, g, J) is called a
Kähler-like statistical manifold.

By virtue of (1.3), we get

g ((∇XJ) Y,Z) + g (Y, (∇∗
XJ∗) Z) = 0

(see [10]).
On a Kähler-like statistical manifold (M,∇, g, J), Takano [10] consid-

ered the curvature tensor R w.r.t. ∇ such that

R (X,Y ) Z =
c

4
{g (Y,Z) X − g (X,Z) Y − g (Y, JZ) JX + g (X,JZ) JY

+ [g (X,JY ) − g (Y, JX)] JZ}. (1.4)

2. Statistical Submersions

Let (Mm, g) and (Nn, ĝ) be Riemannian manifolds and F : M → N a Rie-
mannian submersion. For x ∈ N , Riemannian submanifold F−1 (x) with the
induced metric g is called a fiber and denoted by M. The dimension of each
fiber is always (m − n) = s. In the tangent bundle TM of M , the vertical
and horizontal distributions are denoted by V (M) and H (M), respectively.
We call a vector field X on M projectable if there exists a vector field X∗ on
N such that F∗ (Xp) = X∗F (p) for each p ∈ M , in this case X and X∗ are
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F -related. Also, a vector field X on H (M) is called basic if it is projectable
(see [7,8]).

The fundamental tensors of a submersion were introduced in [7]. They
play a similar role to that of the second fundamental form of an immersion.
More precisely, O’Neill’s tensors T and A are defined for vector fields E, F
on M by

TEF = h∇υEυF + υ∇υEhF (2.1)

and

AEF = h∇hEυF + υ∇hEhF.

Let (M,∇, g) be a statistical manifold and F : M → N a Riemannian sub-
mersion. Let ∇ and ∇∗

denote the affine connections on M . It is clear that
∇UV = υ∇UV and ∇∗

UV = υ∇∗
UV. It can be easily seen that ∇ and ∇∗

are
torsion free and conjugate to each other w.r.t. g.

Let ̂∇ be an affine connection on N. We call F : (M,∇, g) → (N, ̂∇, ĝ)
a statistical submersion if F : M → N satisfies F∗ (∇XY )p = (̂∇X∗Y∗)F (p)

for basic vector fields X,Y and p ∈ M [10]. Changing ∇ for ∇∗ in the above
equations, we define T ∗ and A∗, respectively [10]. A and A∗ are equal to zero
if and only if H (M) is integrable with respect to ∇ and ∇∗, respectively. For
X,Y ∈ H (M) and U, V ∈ V (M), we obtain

g (TUV,X) = −g (V, T ∗
UX) , g (AXY,U) = −g (Y,A∗

XU). (2.2)

Takano gave the following two lemmas in [10].

Lemma 2.1. For X,Y ∈ H (M), we have AXY = −A∗
Y X.

Lemma 2.2. For X,Y ∈ H (M) and U, V ∈ V (M), we have

∇UV = TUV + ∇UV, ∇∗
UV = T ∗

UV + ∇∗
UV,

∇UX = h∇UX + TUX, ∇∗
UX = h∇∗

UX + T ∗
UX,

∇XU = AXU + υ∇XU, ∇∗
XU = A∗

XU + υ∇∗
XU,

∇XY = h∇XY + AXY, ∇∗
XY = h∇∗

XY + A∗
XY.

Furthermore, if X is basic, then h∇UX = AXU and h∇∗
UX = A∗

XU.

Let R be the curvature tensor w.r.t. the induced affine connection ∇
of each fiber. Moreover, let ̂R (X,Y ) Z be horizontal vector field such that
F∗( ̂R (X,Y ) Z) = ̂R (F∗X,F∗Y ) F∗Z at each p ∈ M , where ̂R is the curvature
tensor on N of the affine connection ̂∇.

Theorem 2.1 [10]. If F : (M,∇, g) → (N, ̂∇, ĝ) is a statistical submersion,
then for X,Y,Z, Z

′ ∈ H (M) and U, V,W,W
′ ∈ V (M)
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(i) g
(

R (U, V )W, W
′)

= g
(

R (U, V )W, W
′)

+ g
(

TUW, T ∗
V W

′) − g
(

TV W, T ∗
UW

′)
,

(ii) g (R (X, U)V, Y ) = g
(

(∇XT )U V, Y
) − g

(

(∇UA)X V, Y
)

+ g (AXU, A∗
Y V ) − g (TUX, T ∗

V Y ) ,

(iii) g (R (X, U)Y, V ) = g
(

(∇XT )U Y, V
) − g

(

(∇UA)X Y, V
)

+g (TUX, TV Y ) − g (AXU, AY V ) ,

(iv) g
(

R (X, Y )Z, Z
′)

= g
(

̂R (X, Y )Z, Z
′) − g

(

AY Z, A∗
XZ

′)

+ g
(

AXZ, A∗
Y Z

′)
+ g

(

(AX + A∗
X)Y, A∗

ZZ
′)

.

We define by {E1, . . . , Em}, {X1, . . . , Xn} and {U1, . . . , Uα} the orthonor-
mal basis of χ (M), H (M) and V (M), respectively, such that Ei = Xi,
(1 ≤ i ≤ n) and En+α = Uα (1 ≤ α ≤ s) . Denote, respectively, by ωa

b and
ω∗b

a the connection forms in terms of local coordinates w.r.t. {E1, . . . , Em}
of the affine connection ∇ and its conjugate ∇∗, where 1 ≤ a, b ≤ m. Using
(1.1), we get

ω∗b
a = −ωa

b , (2.3)

(see [10]). From [12], we have

g (TX, TY ) =
s

∑

α=1

g (TUα
X,TUα

Y )

for X,Y ∈ H (M). The mean curvature vector fields of the fiber w.r.t. the
affine connection ∇ and its conjugate connection ∇∗ are given by the hori-
zontal vector fields, respectively,

H =
s

∑

α=1

TUα
Uα

and

H∗ =
s

∑

α=1

T ∗
Uα

Uα.

3. Cosymplectic-Like Statistical Submersions with Certain
Conditions

Let (M, g) be an odd dimensional semi-Riemannian manifold with the almost
contact structure (ϕ, ξ, η) which has an another tensor field ϕ∗ of type (1, 1)
satisfying

g (ϕE,F ) + g (E,ϕ∗F ) = 0,

for vector fields E and F on M. Then (M, g, ϕ, ξ, η) is called an almost contact
metric manifold of certain kind [12]. It is easy to see that ϕ∗2E = −E +
η (E) ξ and

g (ϕE,ϕ∗F ) = g (E,F ) − η(E)η(F ).
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So ϕ is not symmetric. Equations ϕξ = 0 and η(ϕE) = 0 hold on the almost
contact manifold. We obtain ϕ∗ξ = 0 and η(ϕ∗E) = 0 on the almost contact
metric manifold of certain kind [12].

Moreover, for E ∈ χ (M), if

∇Eξ = 0, ∇Eϕ = 0, (3.1)

then (M,∇, g, ϕ, ξ, η) is called a cosymplectic-like statistical manifold [6].

Lemma 3.1 [6]. (M,∇, g, ϕ, ξ, η) is a cosymplectic-like statistical manifold if
and only if (M,∇∗, g, ϕ∗, ξ, η) is a cosymplectic-like statistical manifold.

On a cosymplectic-like statistical manifold, we consider the curvature
tensor R w.r.t. ∇ such that

R (E,F ) G =
c

4
{g (F,G) E − g (E,G) F + g (E,ϕG) ϕF − g (F,ϕG) ϕE

+ [g (E,ϕF ) − g (ϕE,F )] ϕG + η (E) η (G) F − η (F ) η (G) E

+ g (E,G) η (F ) ξ − g (F,G) η (E) ξ} , (3.2)

where c is a constant. Changing ϕ for ϕ∗ in (3.2), we get the expression of
the curvature tensor R∗. Now we give the following examples.

Example 3.1. The Euclidean space R
4 with local coordinate system

{x1, x2, y1, y2}, which admits the following almost complex structure J :

J =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 1

− 1 0 0 0
0 − 1 0 0

⎞

⎟

⎟

⎠

,

the metric gR4 = 2dx2
1+2dx2

2−dy2
1−dy2

2 and the flat affine connection ∇R
4

is a
Kähler-like statistical manifold (see [12]). If

(

R,∇R,dt2
)

is a trivial statistical
manifold, it is known from [6] that the product manifold (R × R

4, ˜∇, g̃ =
dt2 + gR4) is a cosymplectic-like statistical manifold. The curvature tensor of
(R × R

4, ˜∇, g̃ = dt2 + gR4 , ϕ, ξ, η) satisfies Eq. (3.2) with c = 0.
We define ϕ, ξ and η by

ϕ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 − 1 0 0 0
0 0 − 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, ξ = dt =

⎛

⎜

⎜

⎜

⎜

⎝

1
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

and η = (1, 0,−y1, 0,−y2) . We also find

ϕ∗ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 − 1

2 0
0 0 0 0 − 1

2
0 2 0 0 0
0 0 2 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

This manifold is not cosymplectic with respect to the Levi-Civita connection.
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Example 3.2. The Euclidean space R
2 with local coordinate system {x, y},

which admits the following almost complex structure J :

J =
(

0 1
−1 0

)

,

the metric gR2 = 2
y2 dx2 + 1

y2 dy2 and ∇R
2

defined by

∇∂x
∂x = −∇∂y

∂y =
4
3y

∂y,

and

∇∂x
∂y = ∇∂y

∂x = − 4
3y

∂x

is a Kähler-like statistical manifold (see [10]) and
(

R,∇R,dt2
)

is a trivial
statistical manifold. So similar to the previous example, (R × R

2, ˜∇, g̃ =
dt2 + gR2) is a cosymplectic-like statistical manifold. We define ϕ and ξ by

ϕ =

⎛

⎝

0 0 0
0 0 1
0 − 1 0

⎞

⎠ , ξ = dt =

⎛

⎝

1
0
0

⎞

⎠ .

We also find

ϕ∗ =

⎛

⎝

0 0 0
0 0 1

2
0 − 2 0

⎞

⎠ .

Furthermore, it is easy to see that (R×R
2, ˜∇, g̃ = dt2 + gR2 , ϕ, ξ, η) satisfies

Eq. (3.2) with c = − 8
9 .

Let (M, g, ϕ, ξ, η) be an almost contact metric manifold. If F : M → N
is a Riemannian submersion, each fiber is a ϕ-invariant Riemannian subman-
ifold of M and tangent to the vector field ξ, then F is said to be an almost
contact metric submersion. If X is basic on M , which is F -related to X∗ on
N , then ϕX (resp. ϕ∗X) is basic and F -related to ϕX∗ (resp. ϕ∗X∗) [10].

Similar to the Takano’s definition for Sasaki-like statistical submersion
(see [12]), we define cosymplectic-like statistical submersion as follows: a sta-
tistical submersion F : (M,∇, g) → (N, ̂∇, ĝ) is called a cosymplectic-like sta-
tistical submersion if (M,∇, g, ϕ, ξ, η) is a cosymplectic-like statistical man-
ifold, each fiber is a ϕ-invariant Riemannian submanifold of M and tangent
to ξ.

So we have the following lemmas.

Lemma 3.2. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion. Then

AXξ = 0,

TUξ = 0,

υ∇Xξ = 0

and

∇Uξ = 0,
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where X ∈ H (M) and U ∈ V (M).

Proof. Since each fiber is a ϕ-invariant Riemannian submanifold of M such
that tangent to ξ and M is a cosymplectic-like statistical manifold, from
Lemma 2.2, we obtain the above equations. �

Lemma 3.3. If F : (M,∇, g) → (N, ̂∇, ĝ) is a cosymplectic-like statistical
submersion, then

(h∇Xϕ) Y = 0,

AXϕY = ϕAXY,

AϕXU = ϕAXU, if X is basic,
TUϕX = ϕTUX,

AXϕU = ϕAXU,

(υ∇Xϕ) U = 0

and
(∇Uϕ

)

V = 0,

where X,Y ∈ H (M) and U, V ∈ V (M) .

Proof. Since horizontal and vertical distributions are ϕ-invariant, for X,Y ∈
H (M), from (3.1) and Lemma 2.2, we have

AXϕY + h∇XϕY − ϕAXY − ϕh∇XY = 0.

So we obtain the first two equations. Similarly, for U ∈ V (M) and X ∈
H (M), we have

TUϕX + h∇UϕX − ϕTUX − ϕh∇UX = 0. (3.3)

If we take X as basic, from Lemma 2.2, we find the third and the fourth
equations. Similarly, we obtain the fifth and the sixth equations.

Finally, for U, V ∈ V (M), from (3.1) and Lemma 2.2, we have

TUϕV + υ∇UϕV − ϕTUV − ϕυ∇UV = 0.

This gives us
(∇Uϕ

)

V = 0. �

Using Lemmas 3.2 and 3.3, we can state the following theorem.

Theorem 3.1. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statis-
tical submersion. Then (N, ̂∇, ĝ) is a Kähler-like statistical manifold and
(

M,∇, g, ϕ, ξ, η
)

a cosymplectic-like statistical manifold.

Proof. From Lemmas 3.2 and 3.3, it is clear that each fiber is a cosymplectic-
like statistical manifold.

Now we shall show that (N, ̂∇, ĝ) is a Kähler-like statistical manifold.
Let X,Y,Z be basic vector fields and F related to X∗, Y∗, Z∗ ∈ N . Since

ĝ
((

̂∇X∗J
)

Y∗, Z∗
)

= ĝ
(

̂∇X∗JY∗ − J ̂∇X∗Y∗, Z∗
)

,

and F is a cosymplectic-like statistical submersion, we find

ĝ
(

̂∇X∗JY∗ − J ̂∇X∗Y∗, Z∗
)

= ĝ
(

̂∇X∗F∗ (ϕY ) − J ̂∇X∗F∗Y, F∗Z
)
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= ĝ (F∗ (∇XϕY ) − F∗ (ϕ∇XY ) , F∗Z)
= g (∇XϕY − ϕ∇XY,Z) = g ((∇Xϕ) Y,Z) .

Since (M,∇, g) is a cosymplectic-like statistical manifold, (∇Xϕ)Y = 0.
Hence, from the above equation, we obtain (̂∇X∗J)Y∗ = 0, which shows
that the base space is a Kähler-like statistical manifold. �

Lemma 3.4. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion. If dim M = 1, then H (M) is integrable.

Proof. Assume that F : (M,∇, g) → (N, ̂∇, ĝ) is a cosymplectic-like statisti-
cal submersion. Then

(∇Xϕ) Y = ∇XϕY − ϕ∇XY = 0.

Changing Y with ϕY in the above equation, we write

∇Xϕ2Y − ϕ∇XϕY = 0.

Since ϕ2Y = −Y + η (Y ) ξ, we get

−∇XY + g (∇XY, ξ) ξ + g (Y,∇∗
Xξ) ξ + η (Y ) ∇Xξ − ϕ∇XϕY = 0.

Using Lemma 2.2, we obtain

− AXY − h∇XY + g (AXY, ξ) ξ − ϕAXϕY − ϕh∇XϕY = 0. (3.4)

Hence, the vertical part of (3.4) satisfies

−AXY + g (AXY, ξ) ξ − ϕAXϕY = 0.

Since g (AXY, ξ) = 0, we have AXY = −ϕAXϕY . Because of dim M = 1, we
find AXϕY = 0. So we get A = 0 on H (M). Thus, H (M) is integrable. �

From (1.3), if we take E = F = AXY , then we have

(ϕ + ϕ∗) AXY = 0. (3.5)

Then we can state the following theorem.

Theorem 3.2. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion. If rank (ϕ + ϕ∗) = dimM − 1, then H (M) is integrable.

Proof. From Lemma 3.3, we find AXY = −ϕAXϕY . Let {U1, U2, . . . , Us−1, ξ}
be orthonormal frame field. Since rank (ϕ + ϕ∗) = dimM−1, the vector fields
(ϕ + ϕ∗) U1, (ϕ + ϕ∗) U2,. . . , (ϕ + ϕ∗) Us−1 are linearly independent. So we
obtain

AXϕY = g (AXϕY, ξ) ξ

and

ϕAXϕY = 0.

Hence, we have A = 0 on H (M). Then H (M) is integrable. �

So in view of Lemma 3.3 and Eq. (3.5), we have the following corollary.

Corollary 3.1. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion. If ϕ = ϕ∗, then H (M) is integrable.
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Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical submer-
sion. So from Theorem 2.1 and Eq. (3.2), we have

g
(

R (U, V )W, W
′)

=
c

4

{

g (V, W ) g
(

U, W
′)

− g (U, W ) g
(

V, W
′)

+ η (U) η (W ) g
(

V, W
′) − η (V ) η (W ) g

(

U, W
′)

+ η (V ) η
(

W
′)

g (U, W ) − η (U) η
(

W
′)

g (V, W ) − g (V, ϕW ) g
(

W
′
, ϕU

)

+ g (U, ϕW ) g
(

ϕV, W
′)

+ [g (U, ϕV ) − g (ϕU, V )] g
(

ϕW, W
′)}

, (3.6)

g (R (X, U)V, Y ) =
c

4
{[g (U, V ) − η (U) η (V )] g (X, Y ) − g (U, ϕV ) g (ϕX, Y )} , (3.7)

g (R (X, U)Y, V ) = − c

4
{[g (U, V ) − η (U) η (V )] g (X, Y ) − g (ϕU, V ) g (X, ϕY )} , (3.8)

g
(

R (X, Y )Z, Z
′)

=
c

4

{

g (Y, Z) g
(

X, Z
′) − g (X, Z) g

(

Y, Z
′) − g (Y, ϕZ) g

(

ϕX, Z
′)

+ g
(

ϕY, Z
′)

g (X, ϕZ) + [g (X, ϕY ) − g (ϕX, Y )] g
(

ϕZ, Z
′)}

. (3.9)

Hence, we can state the following theorem.

Theorem 3.3. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion. If H (M) is integrable and the curvature tensor of M is of the
form (3.2), then the curvature tensor of N is of the form (1.4).

Proof. Assume that H (M) is integrable. Then A = 0. Since the curvature
tensor of the total space satisfies Eq. (3.2 ), we have (3.9). So if we take the
vector fields X,Y,Z as basic and F -related to X∗, Y∗, Z∗, then from (3.9), we
obtain

F∗
(

̂R (X, Y )Z
)

= ̂R (F∗X, F∗Y )F∗Z =
c

4
{ĝ (Y∗, Z∗)X∗ − ĝ (X∗, Z∗)Y∗

− ĝ (Y∗, JZ∗) JX∗ + ĝ (X∗, JZ∗) JX∗ + [g (X∗, JY∗) − g (JX∗, Y∗)] JZ∗} .

This completes the proof. �

Corollary 3.2. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion. If dim M = 1 or rank (ϕ + ϕ∗) = dimM − 1 and the curvature
tensor of M is of the form (3.2), then the curvature tensor of N is of the
form (1.4).

If H (M) is integrable, from Eq. (3.7), we find

g ((∇XT )U V, Y ) − g (TUX,T ∗
V Y ) =

c

4
{[g (U, V ) − η (U) η (V )] g (X,Y )

−g (U,ϕV ) g (ϕX, Y )} .

By a contraction from the last equation over U and V , we get
s

∑

α=1

g
(

(∇XT )Uα
Uα, Y

) −
s

∑

α=1

g
(

TUα
X,T ∗

Uα
Y

)

=
c

4
{(s − 1) g (X,Y ) − (trϕ) g (ϕX, Y )} . (3.10)
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Since T is symmetric on M , from (2.2), we obtain
s

∑

α=1

g
(

(∇XT )Uα
Uα, Y

)

= g (∇XH,Y ) +
s

∑

α=1

{

g
(

T ∗
Uα

Y,∇XUα

)

+g
(

T ∗
Uα

Y,∇XUα

)}

. (3.11)

Using Eq. (2.3), we find
s

∑

α=1

g
(

T ∗
Uα

Y,∇∗
XUα

)

= −
s

∑

α=1

g
(

T ∗
Uα

Y,∇XUα

)

.

By the use of the last equation in (3.11), from (2.1), we get
s

∑

α=1

g
(

(∇XT )Uα
Uα, Y

)

= g (∇XH, Y ) +

s
∑

α=1

g (T ∗
Uα

Y, TUαX − T ∗
Uα

X) .

(3.12)

In view of (3.10) and (3.12), we have

g (∇XH, Y ) − g (T ∗Y, T ∗X) =
c

4
{(s − 1) g (X, Y ) − (trϕ) g (ϕX, Y )} .

(3.13)

If h∇XH = 0, then we find

− g (T ∗Y, T ∗X) =
c

4
{(s − 1) g (X,Y ) − (trϕ) g (ϕX, Y )} . (3.14)

Thus, using (3.14), we obtain the following theorem and corollary.

Theorem 3.4. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion such that the curvature tensor of M is of the form (3.2). Suppose
that H (M) is integrable and h∇XH = 0 for X ∈ H (M).

(i) If c = 0, then M and N are flat, each fiber is a totally geodesic subman-
ifold of M .

(ii) In the cases of trϕ = 0 and c < 0, we find dim M > 1.

Corollary 3.3. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion such that the curvature tensor of M is of the form (3.2). If H (M)
is integrable and H is a constant vector field, then we have similar results to
Theorem 3.4.

Similarly, from Eqs. (3.8) and (1.2), we have

g ((∇∗
XT ∗)U V, Y ) − g ((∇∗

UA∗)X V, Y ) + g (A∗
XU,AY V ) − g (T ∗

UX,TV Y )

=
c

4
{[g (U, V ) − η (U) η (V )] g (X,Y ) − g (ϕU, V ) g (X,ϕY )} .

If H (M) is integrable, then the last equation can be written as

g ((∇∗
XT ∗)U V, Y ) − g (T ∗

UX,TV Y ) =
c

4
{[g (U, V ) − η (U) η (V )] g (X,Y )

−g (ϕU, V ) g (X,ϕY )} .

By a contraction from the last equation over U and V , we get
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s
∑

α=1

{

g
(

(∇∗
XT ∗)Uα

Uα, Y
) − g

(

T ∗
Uα

X,TUα
Y

)}

=
c

4
{(s − 1) g (X,Y ) − (trϕ) g (X,ϕY )} . (3.15)

Since T is symmetric on M , from (2.2), we obtain
s

∑

α=1

g
(

(∇∗
XT ∗)Uα

Uα, Y
)

= g (∇∗
XH∗, Y ) +

s
∑

α=1

{g (TUα
Y,∇∗

XUα)

+g (TUα
Y,∇∗

XUα)} . (3.16)

Similarly, from Eq. (2.3), we find
s

∑

α=1

g (TUα
Y,∇∗

XUα) = −
s

∑

α=1

g (TUα
Y,∇XUα) . (3.17)

By the use of (2.1), (3.16) and (3.17), Eq. (3.15) gives

g (∇∗
XH∗, Y ) − g (TY, TX) =

c

4
{(s − 1) g (X,Y ) − (trϕ) g (X,ϕY )} .

So using the above equation, we give the following theorem and corollary.

Theorem 3.5. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion such that the curvature tensor of M is of the form (3.2). Suppose
that H (M) is integrable and h∇∗

XH∗ = 0 for X ∈ H (M).
(i) If c = 0, then M and N are flat, each fiber is a totally geodesic subman-

ifold of M .
(ii) In the cases of trϕ = 0 and c < 0, we find dim M > 1.

Corollary 3.4. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statisti-
cal submersion such that the curvature tensor of M is of the form (3.2). If
dim M = 1 or rank (ϕ + ϕ∗) = dim M − 1 and H∗ is a constant vector field,
then we have similar results to Theorem 3.5.

Takano [10] considered F as a statistical submersion with conformal
fibers. For U, V ∈ V (M) if TUV = 0 (resp. TUV = 1

sg (U, V ) H) holds, then
F is called a statistical submersion with isometric fibers (resp. conformal
fibers). Hence, we get the following Proposition.

Proposition 3.1. If F : (M,∇, g) → (N, ̂∇, ĝ) is a cosymplectic-like statistical
submersion with conformal fibers then F has isometric fibers.

Proof. Let F be a cosymplectic-like statistical submersion with conformal
fibers. So we have

TUV =
1
s
g (U, V ) H.

If we take V = ξ, from Lemma 3.2, 1
sg (U, ξ) H = 0. Since U, ξ ∈ V (M), we

find H = 0. Thus, the proof of the proposition is completed. �
Theorem 3.6. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion with isometric fibers such that the curvature tensor of M is of
the form (3.2). Then each fiber is a totally geodesic submanifold of M such
that the curvature tensor is of the form (3.2).
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Proof. Assume that F has isometric fibers. Then T = 0. Since the curvature
tensor of the total space is of the form (3.2), we get Eq. (3.6). So we obtain
the result. �

Theorem 3.7. Let F : (M,∇, g) → (N, ̂∇, ĝ) be a cosymplectic-like statistical
submersion with isometric fibers such that the curvature tensor of (M,∇, g)
is of the form (3.2). If H (M) is integrable, then M and N are flat.

Proof. From Theorem F in [12], we have

g ((∇XT )U Y, V ) − g ((∇UA)X Y, V ) + g (TUX,TV Y ) − g (AXU,AY V )

= − c

4
{g (X,Y ) g (U, V ) − g (X,Y ) η (U) η (V ) − g (X,ϕY ) g (ϕU, V )}

and

g ((∇Y T )U X,V ) − g ((∇UA)Y X,V ) + g (TUY, TV X) − g (AY U,AXV )

= − c

4
{g (Y,X) g (U, V ) − g (Y,X) η (U) η (V ) − g (Y, ϕX) g (ϕU, V )} .

Assume that H (M) is integrable and F has isometric fibers. Then the above
equations are reduced to

0 =
c

4
{g (X, Y ) g (U, V ) − g (X, Y ) η (U) η (V ) − g (X, ϕY ) g (ϕU, V )} (3.18)

and

0 =
c

4
{g (X, Y ) g (U, V ) − g (X, Y ) η (U) η (V ) − g (ϕX, Y ) g (ϕU, V )} . (3.19)

Subtracting Eq. (3.18) from (3.19), we find

0 =
c

4
g (ϕU, V ) {g (ϕX, Y ) − g (X,ϕY )} .

Hence, contracting the last equation with respect to U and V , we get

0 =
c

4
(trϕ) {g (ϕX, Y ) − g (X,ϕY )} .

Since g (ϕX, Y ) �= g (X,ϕY ), we obtain c = 0 or trϕ = 0.
Furthermore, from Eq. (3.14), we have

0 =
c

4
{(s − 1) g (X,Y ) − (trϕ) g (ϕX, Y )} .

Now assume that trϕ = 0. So from the above equation

0 =
c

4
(s − 1) g (X,Y ) .

Since s > 1, we find c = 0 again. Hence, (M,∇, g) and
(

N, ̂∇, ĝ
)

are flat. �

Example 3.3. Let (R × R
4, ̂∇, ĝ = dt2 + gR4) be the cosymplectic-like sta-

tistical manifold given in Example 3.1. Now we define the cosymplectic-like
statistical submersion F : (R × R

4, ̂∇, ĝ) → (R4,∇R
4
, gR4) as the projection

mapping

F (t, x1, x2, y1, y2) = (x1, x2, y1, y2) .
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Then we find V (M) = span
{

∂
∂t

}

and H (M) = span
{

∂
∂x1

, ∂
∂x2

, ∂
∂y1

, ∂
∂y2

}

. It

is trivial that dimM = 1. Since ∂
∂x1

, ∂
∂x2

, ∂
∂y1

, ∂
∂y2

∈ H (M), we obtain A = 0.

Example 3.4. Let (R × R
2, ̂∇, ĝ = dt2 + gR2) be the cosymplectic-like sta-

tistical manifold given in Example 3.2. Now we define the cosymplectic-like
statistical submersion F : (R × R

2, ̂∇, ĝ) → (R2,∇R
2
, gR2) as the projection

mapping

F (t, x, y) = (x, y) .

Then we find V (M) = span
{

∂
∂t

}

and H (M) = span
{

∂
∂x , ∂

∂y

}

. It is trivial

that dimM = 1. Since ∂
∂x , ∂

∂y ∈ H (M), we obtain A = 0.
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[6] Murathan, C., Şahin, B.: A study of Wintgen like inequality for submanifolds
in statistical warped product manifolds. J. Geom. 109(2), Art. 30 (2018)

[7] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13,
459–469 (1966)

[8] O’Neill, B.: Semi-Riemannian Geometry with Application to Relativity. Aca-
demic Press, New York (1983)
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Hülya Aytimur and Cihan Özgür
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