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Abstract The fixed-point theory and its applications to various areas of science are
well known. In this paper, we present some existence and uniqueness theorems for
fixed circles of self-mappings on metric spaces with geometric interpretation. We
verify our results by illustrative examples.
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1 Introduction

The existence of fixed points of functions has been extensively studied which satisfy
certain conditions since the time of Stefan Banach. At first, we recall the Banach
contraction principle as follows:

Theorem 1.1 [3] Let (X, d) be a complete metric space and a self-mapping T : X →
X be a contraction, that is, there exists some h ∈ [0, 1) such that

d(T x, T y) ≤ hd(x, y),
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for any x, y ∈ X. Then there exists a unique fixed point x0 ∈ X of T .

Since then many authors have been studied new contractive conditions for fixed-
point theorems. For example, Caristi gave the following fixed-point theorem.

Theorem 1.2 [2] Let (X, d) be a complete metric space and T : X → X. If there
exists a lower semicontinuous functionϕmapping X into the nonnegative real numbers

d(x, T x) ≤ ϕ(x) − ϕ(T x), (1.1)

x ∈ X then T has a fixed point.

In [10], Rhoades defined the following condition (which is called Rhoades’ condi-
tion):

d(T x, T y) < max {d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)} ,

for all x, y ∈ X with x �= y.
In a very recent work, the usage of the fixed-point theory can be found in various

research areas (see [7]).
In some special metric spaces, mappings with fixed points have been used in neural

networks as activation functions. For example, Möbius transformations have been
used for this purpose. It is known that a Möbius transformation is a rational function
of the form

T (z) = az + b

cz + d
, (1.2)

where a, b, c, d are complex numbers satisfying ad−bc �= 0.AMöbius transformation
has at most two fixed points (see [5] for more details about Möbius transformations).
In [6], Mandic identified the activation function of a neuron and a single-pole all-
pass digital filter section as Möbius transformations. He observed that the fixed points
of a neural network were determined by the fixed points of the employed activation
function. So, the existence of the fixed points of an activation function was guaranteed
by the underlying Möbius transformation (one or two fixed points).

On the other hand, there are some examples of functions which fix a circle. For
example, let C be the metric space with the usual metric

d(z, w) = |z − w| ,

for all z, w ∈ C. Let the mapping T be defined as

T z = 1

z
,

for all z ∈ C\ {0}. The mapping T fixes the unit circle C0,1. In [9], Özdemir, İskender
and Özgür used new types of activation functions which fix a circle for a complex-
valued neural network (CVNN). The usage of these types of activation functions leads
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us to guarantee the existence of fixed points of the complex-valued Hopfield neural
network (CVHNN).

Therefore, it is important the notions of “fixed circle” and “mappings with a fixed
circle.” It will be an interesting problem to study somefixed-circle theorems on general
spaces (metric spaces or normed spaces).

Motivated by the above studies, our aim in this paper is to examine some fixed-
circle theorems for self-mappings onmetric spaces. Also we determine the uniqueness
conditions of these theorems. In Sect. 2 we introduce the notion of a fixed circle and
prove three theorems for the existence of fixed circles of self-mappings on metric
spaces. Also we give some necessary examples for obtained fixed-circle theorems. In
Sect. 3 we present some self-mappings which have at least two fixed circles. Hence,
we give three uniqueness theorems for the fixed-circle theorems obtained in Sect. 2.
In Sect. 4 we give an application of our results to discontinuous activation functions.

2 Existence of the Self-Mappings with Fixed Circles

In this section, we give fixed-circle theorems under some conditions on metric spaces
and obtain some examples of mappings which have or not fixed circles. At first, we
give the following definition.

Definition 2.1 Let (X, d) be a metric space and Cx0,r = {x ∈ X : d(x0, x) = r} be
a circle. For a self-mapping T : X → X , if T x = x for every x ∈ Cx0,r then we call
the circle Cx0,r as the fixed circle of T .

Now we give the following existence theorem for a fixed circle using the inequality
(1.1).

Theorem 2.1 Let (X, d) be a metric space and Cx0,r be any circle on X. Let us define
the mapping

ϕ : X → [0,∞), ϕ(x) = d(x, x0), (2.1)

for all x ∈ X. If there exists a self-mapping T : X → X satisfying

(C1) d(x, T x) ≤ ϕ(x) − ϕ(T x) and
(C2) d(T x, x0) ≥ r , for each x ∈ Cx0,r , then the circle Cx0,r is a fixed circle of T .

Proof Let us consider the mapping ϕ defined in (2.1). Let x ∈ Cx0,r be any arbitrary
point.We show that T x = x whenever x ∈ Cx0,r . Using the condition (C1), we obtain

d(x, T x) ≤ ϕ(x) − ϕ(T x) = d(x, x0) − d(T x, x0)

= r − d(T x, x0). (2.2)

Because of the condition (C2), the point T x should be lies on or exterior of the
circle Cx0,r . Then we have two cases. If d(T x, x0) > r , then using (2.2) we have a
contradiction. Therefore, it should be d(T x, x0) = r . In this case, using (2.2) we get

d(x, T x) ≤ r − d(T x, x0) = r − r = 0

and so T x = x .
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Hence, we obtain T x = x for all x ∈ Cx0,r . Consequently, the self-mapping T
fixes the circle Cx0,r . �	
Remark 2.1 1. We note that Theorem 1.2 guarantees the existence of a fixed point,

while Theorem 2.1 guarantees the existence of a fixed circle. In the cases where the
circleCx0,r has only one element (see Example 2.10 for an example), Theorem 2.1
is a special case of Theorem 1.2.

2. Notice that the condition (C1) guarantees that T x is not in the exterior of the circle
Cx0,r for each x ∈ Cx0,r . Similarly, the condition (C2) guarantees that T x is not
in the interior of the circle Cx0,r for each x ∈ Cx0,r . Consequently, T x ∈ Cx0,r

for each x ∈ Cx0,r and so we have T (Cx0,r ) ⊂ Cx0,r (see Fig. 1 for the geometric
interpretation of the conditions (C1) and (C2)).

Now we give a fixed-circle example.

Example 2.1 Let (X, d) be a metric space and α be a constant such that

d(α, x0) > r.

Let us consider a circle Cx0,r and define the self-mapping T : X → X as

T x =
{
x; x ∈ Cx0,r

α; otherwise
,

for all x ∈ X . Then it can be easily seen that the conditions (C1) and (C2) are satisfied.
Clearly Cx0,r is a fixed circle of T .

Now, in the following examples, we give some examples of self-mappings which
satisfy the condition (C1) and do not satisfy the condition (C2).

Example 2.2 Let (X, d) be any metric space, Cx0,r be any circle on X , and the self-
mapping T : X → X be defined as

T x = x0,

for all x ∈ X . Then the self-mapping T satisfies the condition (C1) but does not satisfy
the condition (C2). Clearly T does not fix the circle Cx0,r .

Example 2.3 Let (R, d) be the usual metric space. Let us consider the circle C1,2 and
define the self-mapping T : R → R as

T x =
{
1; x ∈ C1,2
2; otherwise

,

for all x ∈ R. Then the self-mapping T satisfies the condition (C1) but does not satisfy
the condition (C2). Clearly T does not fix the circle C1,2 (or any circle).

In the following examples, we give some examples of self-mappings which satisfy
the condition (C2) and do not satisfy the condition (C1).
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Fig. 1 The conditions (C1) and
(C2). a The geometric
interpretation of the condition
(C1), b the geometric
interpretation of the condition
(C2), c the geometric
interpretation of the condition
(C1) ∩ (C2)
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Example 2.4 Let (X, d) be any metric space and Cx0,r be any circle on X . Let α be
chosen such that d(α, x0) = ρ > r and consider the self-mapping T : X → X defined
by

T x = α,

for all x ∈ X . Then the self-mapping T satisfies the condition (C2) but does not satisfy
the condition (C1). Clearly T does not fix the circle Cx0,r .

Example 2.5 Let (C, d) be the usual complex metric space and C0,1 be the unit circle
on C. Let us consider the self-mapping T : C → C defined by

T z =
⎧⎨
⎩

1

z
; z �= 0

0; z = 0
,

for all z ∈ C. Then the self-mapping T satisfies the condition (C2) but does not satisfy
the condition (C1). Clearly T does not fix the circle C0,1 (or any circle). Notice that
T fixes only the points −1 and 1 on the unit circle.

Now we give another existence theorem for fixed circles.

Theorem 2.2 Let (X, d) be a metric space and Cx0,r be any circle on X. Let the
mapping ϕ be defined as (2.1). If there exists a self-mapping T : X → X satisfying

(C1)* d(x, T x) ≤ ϕ(x) + ϕ(T x) − 2r and
(C2)* d(T x, x0) ≤ r , for each x ∈ Cx0,r , then Cx0,r is a fixed circle of T .

Proof We consider the mapping ϕ defined in (2.1). Let x ∈ Cx0,r be any arbitrary
point. Using the condition (C1)∗, we obtain

d(x, T x) ≤ ϕ(x) + ϕ(T x) − 2r = d(x, x0) + d(T x, x0) − 2r

= d(T x, x0) − r. (2.3)

Because of the condition (C2)∗, the point T x should be lies on or interior of the
circle Cx0,r . Then we have two cases. If d(T x, x0) < r , then using (2.3) we have a
contradiction. Therefore, it should be d(T x, x0) = r . If d(T x, x0) = r , then using
(2.3) we get

d(x, T x) ≤ d(T x, x0) − r = r − r = 0

and so we find T x = x .
Consequently, Cx0,r is a fixed circle of T . �	

Remark 2.2 Notice that the condition (C1)∗ guarantees that T x is not in the interior of
the circle Cx0,r for each x ∈ Cx0,r . Similarly, the condition (C2)∗ guarantees that T x
is not in the exterior of the circle Cx0,r for each x ∈ Cx0,r . Consequently, T x ∈ Cx0,r

for each x ∈ Cx0,r and so we have T (Cx0,r ) ⊂ Cx0,r (see Fig. 2 for the geometric
interpretation of the conditions (C1)∗ and (C2)∗).

Now we give some fixed-circle examples.
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Fig. 2 The conditions (C1)∗
and (C2)∗. a The geometric
interpretation of the condition
(C1)∗, b the geometric
interpretation of the condition
(C2)∗, c the geometric
interpretation of the condition
(C1)∗ ∩ (C2)∗
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Example 2.6 Let (X, d) be a metric space and α be a constant such that

d(α, x0) < r.

Let us consider a circle Cx0,r and define the self-mapping T : X → X as

T x =
{
x; x ∈ Cx0,r

α; otherwise
,

for all x ∈ X . Then it can be easily checked that the conditions (C1)∗ and (C2)∗ are
satisfied. Clearly Cx0,r is a fixed circle of the self-mapping T .

Example 2.7 Let (R, d) be the usual metric space and C0,1 be the unit circle on R.
Let us define the self-mapping T : R → R as

T x =
{ 1

x
; x ∈ C0,1

5; otherwise
,

for all x ∈ R. Then the self-mapping T satisfies the conditions (C1)∗ and (C2)∗.
Hence, C0,1 is the fixed circle of T . Notice that the fixed circle C0,1 is not unique.
C3,2 and C2,3 are also fixed circles of T . It can be easily verified that T satisfies the
conditions (C1)∗ and (C2)∗ for the circles C3,2 and C2,3.

In the following example, we give an example of a self-mapping which satisfies the
condition (C2)∗ and does not satisfy the condition (C1)∗.

Example 2.8 Let (X, d) be any metric space and Cx0,r be any circle on X . Let α be
chosen such that d(α, x0) = ρ < r and consider the self-mapping T : X → X defined
by

T x = α,

for all x ∈ X . Then the self-mapping T satisfies the condition (C2)∗ but does not
satisfy the condition (C1)∗. Clearly T does not fix the circle Cx0,r .

In the following example, we give an example of a self-mapping which satisfies the
condition (C1)∗ and does not satisfy the condition (C2)∗.

Example 2.9 Let (R, d) be the usual metric space and C0,1 be the unit circle on R.
Let us define the self-mapping T : R → R as

T x =
⎧⎨
⎩

− 5; x = −1
5; x = 1
10; otherwise

,

for all x ∈ R. Then the self-mapping T satisfies the condition (C1)∗ but does not
satisfy the condition (C2)∗. Clearly T does not fix the circle C0,1 (or any circle).
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Using the inequality (1.1), we give another existence fixed-circle theorem on a
metric space.

Theorem 2.3 Let (X, d) be a metric space and Cx0,r be any circle on X. Let the
mapping ϕ be defined as (2.1). If there exists a self-mapping T : X → X satisfying

(C1)∗∗ d(x, T x) ≤ ϕ(x) − ϕ(T x), and
(C2)∗∗ hd(x, T x)+ d(T x, x0) ≥ r , for each x ∈ Cx0,r and some h ∈ [0, 1), then
Cx0,r is a fixed circle of T .

Proof Weconsider themappingϕ defined in (2.1).Assume that x ∈ Cx0,r and T x �= x .
Then using the conditions (C1)∗∗ and (C2)∗∗, we obtain

d(x, T x) ≤ ϕ(x) − ϕ(T x) = d(x, x0) − d(T x, x0)

= r − d(T x, x0)

≤ hd(x, T x) + d(T x, x0) − d(T x, x0)

= hd(x, T x),

which is a contradiction with our assumption since h ∈ [0, 1). Therefore, we get
T x = x and Cx0,r is a fixed circle of T . �	
Remark 2.3 Notice that the condition (C1)∗∗ guarantees that T x is not in the exterior
of the circle Cx0,r for each x ∈ Cx0,r . The condition (C2)∗∗ implies that T x can be
lies on or exterior or interior of the circle Cx0,r . Consequently, T x should be lies on or
interior of the circle Cx0,r (see Fig. 3 for the geometric interpretation of the conditions
(C1)∗∗ and (C2)∗∗).

Example 2.10 Let X = R and the mapping d : X2 → [0,∞) be defined as

d(x, y) = ∣∣ex − ey
∣∣ ,

for all x ∈ R. Then (R, d) be a metric space. Let us consider the circle C0,1 = {ln 2}
and define the self-mapping T : R → R as

T x =
{
ln 2; x ∈ C0,1
1; otherwise

,

for all x ∈ R. Then it can be easily checked that the conditions (C1)∗∗ and (C2)∗∗
are satisfied. Hence, the unit circle C0,1 is a fixed circle of T .

In the following example, we give an example of a self-mapping which satisfies the
condition (C1)∗∗ and does not satisfy the condition (C2)∗∗.

Example 2.11 Let (R, d) be the usual metric space. Let us consider the circle C2,4 =
{−2, 6} and define the self-mapping T : R → R as

T x =
{
2; x ∈ C2,4
6; otherwise

,
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Fig. 3 The conditions (C1)∗∗
and (C2)∗∗. a The geometric
interpretation of the condition
(C1)∗∗, b the geometric
interpretation of the condition
(C2)∗∗, c the geometric
interpretation of the condition
(C1)∗∗ ∩ (C2)∗∗
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for all x ∈ R. Then the self-mapping T satisfies the condition (C1)∗∗ but does not
satisfy the condition (C2)∗∗. Clearly T does not fix the circle C2,4 (or any circle).

In the following example, we give an example of a self-mapping which satisfies the
condition (C2)∗∗ and does not satisfy the condition (C1)∗∗.

Example 2.12 Let (R, d) be the usual metric space. Let us consider the circle C0,2
and define the self-mapping T : R → R as

T x = 2,

for all x ∈ R. Then the self-mapping T satisfies the condition (C2)∗∗ but does not
satisfy the condition (C1)∗∗. Clearly T does not fix the circle C0,2 (or any circle).

Example 2.13 Let X = R and the mapping d : X2 → [0,∞) be defined as

d(x, y) =
{
0; x = y
|x | + |y| ; x �= y

,

for all x ∈ R. Then (R, d) be ametric space. Let us define the self-mapping T : R → R

as

T x =
{ 1

2
; x ∈ {−1, 1}

0; otherwise
,

for all x ∈ R. Then the self-mapping T does not satisfy the condition (C1)∗ but
satisfies the condition (C2)∗ for the circle C1,2. Hence, T does not fix the circle C1,2.
On the other hand, it can be easily checked that T satisfies both the conditions (C1)∗
and (C2)∗ for the circle C1,1 and so fixes C1,1. Actually notice that T fixes all of the
circles centered at x0 = a ∈ R

+ with radius a.

Let IX : X → X be the identity map defined as IX (x) = x for all x ∈ X. Notice
that the identity map satisfies the conditions (C1) and (C2) (resp. (C1)∗ and (C2)∗,
(C1)∗∗ and (C2)∗∗) in Theorem 2.1 (resp. Theorems 2.2, 2.3). Now we investigate
a condition which excludes IX in Theorems 2.1, 2.2 and 2.3. We give the following
theorem.

Theorem 2.4 Let (X, d) be a metric space and Cx0,r be any circle on X. Let the
mapping ϕ be defined as (2.1). If a self-mapping T : X → X satisfies the condition

(Id) d(x, T x) ≤ ϕ(x) − ϕ(T x)

h
,

for all x ∈ X and some h > 1 then T = IX and Cx0,r is a fixed circle of T .
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Proof Let x ∈ X and T x �= x . Then using the inequality (Id) and the triangle
inequality, we get

hd(x, T x) ≤ ϕ(x) − ϕ(T x)

= d(x, x0) − d(T x, x0)

≤ d(x, T x) + d(T x, x0) − d(T x, x0)

= d(x, T x)

and so
(h − 1)d(x, T x) ≤ 0,

which is a contradiction since h > 1. Hence, we obtain T x = x and T = IX .
Consequently, Cx0,r is a fixed circle of T . �	

Notice that the converse statement of this theorem is also true. Hence, if a self-
mapping T in Theorem 2.1 (resp. Theorems 2.2, 2.3) does not satisfy the condition
(Id) given in Theorem 2.4 then T cannot be the identity map.

Considering the above examples, we see that our existence theorems are depending
on the given circle (and so the metric on X ). Also fixed circle should not to be unique
as seen in Example 2.7. Therefore, it is necessary and important to determine some
uniqueness theorems for fixed circles.

3 Some Uniqueness Theorems

In this section, we investigate the uniqueness of the fixed circles in theorems obtained
in Sect. 2. Notice that the fixed circle Cx0,r is not necessarily unique in Theorem 2.1
(resp. Theorems 2.2, 2.3). We can give the following result.

Proposition 3.1 Let (X, d) be a metric space. For any given circles Cx0,r and Cx1,ρ ,
there exists at least one self-mapping T of X such that T fixes the circles Cx0,r and
Cx1,ρ .

Proof Let Cx0,r and Cx1,ρ be any circles on X . Let us define the self-mapping T :
X → X as

T x =
{
x; x ∈ Cx0,r ∪ Cx1,ρ

α; otherwise
, (3.1)

for all x ∈ X , where α is a constant satisfying d(α, x0) �= r and d(α, x1) �= ρ. Let us
define the mappings ϕ1, ϕ2 : X → [0,∞) as

ϕ1(x) = d(x, x0)

and
ϕ2(x) = d(x, x1),

for all x ∈ X . Then it can be easily checked that the conditions (C1) and (C2) are
satisfied by T for the circles Cx0,r and Cx1,ρ with the mappings ϕ1(x) and ϕ2(x),
respectively. Clearly Cx0,r and Cx1,ρ are the fixed circles of T by Theorem 2.1. �	
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Notice that the circles Cx0,r and Cx1,ρ do not have to be disjoint (see Example 2.7).

Remark 3.1 Let (X, d) be a metric space and Cx0,r , Cx1,ρ be two circles on X . If we
consider the self-mapping T defined in (3.1), then the conditions (C1)∗ and (C2)∗
are satisfied by T for the circles Cx0,r and Cx1,ρ with the mappings ϕ1(x) and ϕ2(x),
respectively. Clearly Cx0,r and Cx1,ρ are the fixed circles of T by Theorem 2.2. Sim-
ilarly, the self-mapping T in (3.1) satisfies the conditions (C1)∗∗ and (C2)∗∗ for the
circles Cx0,r and Cx1,ρ with the mappings ϕ1(x) and ϕ2(x), respectively.

Corollary 3.1 Let (X, d) be a metric space. For any given circles Cx1,r1 , . . ., Cxn ,rn ,
there exists at least one self-mapping T of X such that T fixes the circles Cx1,r1 , . . .,
Cxn ,rn .

Example 3.1 Let (X, d) be a metric space and Cx1,r1 , . . ., Cxn ,rn be any circles on X .
Let α be a constant such that

d(α, xi ) �= ri (1 ≤ i ≤ n).

Let us define the self-mapping T : X → X by

T x =
⎧⎨
⎩
x; x ∈

n⋃
i=1

Cxi ,ri

α; otherwise
,

for all x ∈ X and the mappings ϕi : X → [0,∞) as

ϕi (x) = d(x, xi ) (1 ≤ i ≤ n).

Then it can be easily checked that the conditions (C1) and (C2) are satisfied by T for
the circles Cx1,r1 , . . ., Cxn ,rn , respectively. Consequently, Cx1,r1 , . . ., Cxn ,rn are fixed
circles of T by Theorem 2.1. Notice that these circles do not have to be disjoint.

Therefore, it is important to investigate the uniqueness of the fixed circles. Now we
determine the uniqueness conditions for the fixed circles in Theorem 2.1.

Theorem 3.1 Let (X, d) be a metric space and Cx0,r be any circle on X. Let T : X →
X be a self-mapping satisfying the conditions (C1) and (C2) given in Theorem 2.1. If
the contraction condition

(C3) d(T x, T y) ≤ hd(x, y), (3.2)

is satisfied for all x ∈ Cx0,r , y ∈ X\Cx0,r and some h ∈ [0, 1) by T , then Cx0,r is the
unique fixed circle of T .

Proof Assume that there exist two fixed circles Cx0,r and Cx1,ρ of the self-mapping
T , that is, T satisfies the conditions (C1) and (C2) for each circles Cx0,r and Cx1,ρ .
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1446 N. Y. Özgür, N. Taş

Let u ∈ Cx0,r and v ∈ Cx1,ρ be arbitrary points. We show that d(u, v) = 0 and hence
u = v. Using the condition (C3), we have

d(u, v) = d(Tu, T v) ≤ hd(u, v),

which is a contradiction since h ∈ [0, 1). Consequently,Cx0,r is the unique fixed circle
of T . �	

Notice that the self-mapping T given in the proof of Proposition 3.1 does not satisfy
the contraction condition (C3).

We give a uniqueness condition for the fixed circles in Theorem 2.2.

Theorem 3.2 Let (X, d) be a metric space and Cx0,r be any circle on X. Let T : X →
X be a self-mapping satisfying the conditions (C1)∗ and (C2)∗ given in Theorem 2.2.
If the contraction condition (C3) defined in (3.2) is satisfied for all x ∈ Cx0,r , y ∈
X\Cx0,r and some h ∈ [0, 1) by T , then Cx0,r is the unique fixed circle of T .

Proof It can be easily seen by the same arguments used in the proof of Theorem 3.1.
�	

Finally, we give a uniqueness condition for the fixed circles in Theorem 2.3.

Theorem 3.3 Let (X, d) be a metric space and Cx0,r be any circle on X. Let T :
X → X be a self-mapping satisfying the conditions (C1)∗∗ and (C2)∗∗ given in
Theorem 2.3. If the contraction condition

(C3)∗∗ d(T x, T y) < max {d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)} ,

is satisfied for all x ∈ Cx0,r , y ∈ X\Cx0,r by T , then Cx0,r is the unique fixed circle
of T .

Proof Suppose that there exist two fixed circlesCx0,r andCx1,ρ of the self-mapping T ,
that is, T satisfies the conditions (C1)∗∗ and (C2)∗∗ for each circles Cx0,r and Cx1,ρ .
Let u ∈ Cx0,r , v ∈ Cx1,ρ and u �= v be arbitrary points. We show that d(u, v) = 0
and hence u = v. Using the condition (C3)∗∗, we have

d(u, v) = d(Tu, T v) < max{d(u, v), d(u, Tu), d(v, T v), d(u, T v), d(v, Tu)}
= d(u, v),

which is a contradiction. Consequently, it should be u = v for all u ∈ Cx0,r , v ∈ Cx1,ρ

and so Cx0,r is the unique fixed circle of T . �	
Notice that the uniqueness of the fixed circle in Theorems 2.1 and 2.2 can be also

obtained using the contraction condition (C3)∗∗. Similarly, the uniqueness of the fixed
circle in Theorem 2.3 can be also obtained using the contraction condition (C3). More
generally it is possible to use appropriate contractive conditions for the uniqueness of
the fixed-circle theorems obtained in Sect. 2.
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4 An Application of the Fixed-Circle Theory to Discontinuous
Activation Functions

There exist some applications of discontinuous activation functions in real-valued and
complex-valued neural networks. Such applications have been become important in
some recent studies (see [4,8,11] for more details).

In this section, we give an application of Theorem 2.2 given in Sect. 2 to discon-
tinuous functions.

Now we recall the following discontinuity theorem given in [1]. Let

M(x, y) = max

{
d(x, y), d(x, T x), d(y, T y),

d(x, T y) + d(y, T x)

2

}
. (4.1)

Theorem 4.1 [1] Let (X, d) be a complete metric space. Let T be a self-mapping on
X such that T 2 is continuous and satisfies the conditions;
1. d(T x, T y) ≤ φ (M(x, y)), where φ : R+ → R

+ is such that φ(t) < t for each
t > 0,

2. For a given ε > 0, there exists a δ(ε) > 0 such that

ε < M(x, y) < ε + δ,

implies d(T x, T y) ≤ ε,

then T has a unique fixed point z and T nx → z for each x ∈ X. Moreover, T is
discontinuous at z if and only if

lim
x→z

M(x, z) �= 0.

If we consider Theorem 2.2 together with the set M(x, y) defined in (4.1), then we
get the following proposition:

Proposition 4.1 Let (X, d) be ametric space, T be a self-mapping on X andCx0,r be a
fixed circle of T . Then T is discontinuous at any x ∈ Cx0,r if and only if limz→x

M(z, x) �=
0.

Nowwegive an application of Proposition 4.1 to discontinuous activation functions.
In [8], the problem of multistability of competitive neural networks with discontin-

uous activation functions was studied and a general class of discontinuous activation
function was defined by

Ti x =

⎧⎪⎪⎨
⎪⎪⎩

ui ; −∞ < x < pi
li,1x + ci,1; pi ≤ x ≤ ri
li,2x + ci,2; ri < x ≤ qi
vi ; qi < x < +∞

, (4.2)
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where pi , ri , qi , ui , vi , li,1, li,2, ci,1 and ci,2 are constants with

−∞ < pi < ri < qi < +∞,

li,1 > 0, li,2 < 0,

ui = li,1 pi + ci,1 = li,2qi + ci,2,

li,1ri + ci,1 = li,2ri + ci,2,

vi > Tiri , i = 1, 2, . . . , n.

To obtain an application of Proposition 4.1, we take

pi = −2, ri = 1, qi = 4,

ui = 4, vi = 7, li,1 = 1,

ci,1 = 6, li,2 = −1, ci,2 = 8,

in the above activation function Ti defined in (4.2). Then we get the following discon-
tinuous activation function.

T x =

⎧⎪⎪⎨
⎪⎪⎩

4; −∞ < x < −2
x + 6; −2 ≤ x ≤ 1
−x + 8; 1 < x ≤ 4
9; 4 < x < +∞

.

The function T satisfies the conditions of Theorem 2.2 for the circle C 13
2 , 52

= {4, 9}
with the center x0 = 13

2 and the radius r = 5
2 . Hence, T fixes the circle C 13

2 , 52
.

We obtain that the function T is discontinuous at any x ∈ C 13
2 , 52

if and only if

lim
x→z

M(x, z) �= 0 by Proposition 4.1. It can be easily seen that T is continuous at

the point x1 = 9 but it is discontinuous at x2 = 4.
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