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Common Fixed Point Results on Complex-Valued S-Metric
Spaces

Nihal Tag'* and Nihal Yilmaz Ozgiir?

ABSTRACT. Banach’s contraction principle has been improved and
extensively studied on several generalized metric spaces. Recently,
complex-valued S-metric spaces have been introduced and studied
for this purpose. In this paper, we investigate some generalized
fixed point results on a complete complex valued S-metric space.
To do this, we prove some common fixed point (resp. fixed point)
theorems using different techniques by means of new generalized
contractive conditions and the notion of the closed ball. Our results
generalize and improve some known fixed point results. We provide
some illustrative examples to show the validity of our definitions
and fixed point theorems.

1. INTRODUCTION

During the last several decades, Banach’s contraction principle has
been improved and studied by some authors on metric and several gen-
eralized metric spaces. In 1977, Rhoades studied some comparisons of
known contractive mappings and proved new fixed point theorems [27].
Also he introduced a new contractive mapping called as a Rhoades’ map-
ping. In 1994, Dien proved a common fixed point theorem for the pair of
mappings satisfying both the Banach contraction principle and Caristi’s
condition in a complete metric space [6]. In 1998, Liu, Xu and Cho gave
necessary and sufficient conditions for the existence of fixed and com-
mon fixed points of self-mappings of metric spaces [[2]. They defined
the notion of an L-mapping to give a fixed point theorem for a Rhoades’
mapping. The present authors defined Rhoades’ condition on S-metric
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spaces and proved some fixed point theorems [I5]. Some new contrac-
tive mappings were studied on S-metric spaces and investigated their
relationships with the Rhoades’ condition [I6]. It was generalized and
extended known fixed point theorems in the literature using S-metric
spaces [I7]. New generalized fixed point resuilts have been obtained
on several generalized metric spaces such as ordered S-metric spaces,
C*-algebra-valued S-metric spaces (see [3, @, [0, [0, 26, 29, B0]).

In 2011, Azam, Fisher and Khan introduced complex-valued metric
spaces and obtained sufficient conditions for the existence of common
fixed points of a pair of mappings satisfying contractive type conditions
[6]. In 2014, Ahmad, Azam and Saejung improved the conditions of con-
tractive mappings from the whole space to a closed ball and established
common fixed point theorems [I]. In 2014, Oztiirk established common
fixed point theorems for two pairs of weakly compatible self-mappings
of a complex-valued metric space [22]. Also, Oztiirk and Kaplan proved
common fixed point theorems for two Banach pairs of mappings with
f-contraction [23]. In 2015, some coupled common fixed point theo-
rems were obtained on a complex-valued Gp-metric space [24]. In 2014,
Mlaiki introduced the notion of a complex-valued S-metric space and
showed the existence and the uniqueness of a common fixed point of two
self-mappings on a complex valued S-metric space [[3]. In [2], some
fixed point theorems were studied for new type generalized contrac-
tive mappings involving C-class function in complex-valued Gp-metric
spaces. Similar studies have been extensively studied on various gener-
alized complex valued metric spaces (see [-9, 24]).

In this paper, we investigate some common fixed point theorems on
complex valued S-metric spaces. In Section B we recall some definitions
and lemmas which are needed in the sequel. In Section B we obtain a new
generalization of the well known Banach’s contraction principle using the
notion of a complex-valued S-metric space. In Section B we introduce
new notions on complex-valued S-metric spaces. In Section B we give a
new common fixed point result on a complete complex-valued S-metric
space. In Section B we define the notions of an open ball and a closed
ball on a complex-valued S-metric space and give some applications of
common fixed point theory in view of the closed balls. In the whole
paper we give some examples to show the validity of our definitions and
fixed point theorems.

2. PRELIMINARIES

Let C be the set of complex numbers and z;, zo0 € C. The partial
order 3 is defined on C as follows:
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z1 3 z9 if and only if Re(z1) < Re(z2), Im(z1) < Im(z2),
and
z1 < 2o if and only if Re(z1) < Re(z2), Im(z1) < Im(z2).

Also we write 21 = zo if one of the following conditions hold:
(i) Re(z1) = Re(22) and Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2) and Im(z1) = Im(z2),
(iii) Re(z1) = Re(z2) and Im(z1) = Im(z2).
Note that
05_/2’]_;22 = |Zl|<|2’2’,
and
21 S 29,20 <23 = 21 <23
Now we recall some known definitions and lemmas as seen in the
references.

Definition 2.1 ([32]). The “max” function is defined for the partial
order relation 3 as follow:
(i) max{z1,22} =20 <& 21 2 22.
(ii) 21 S max{z9,23} = 21 Zzp0r 21 3 23
(iii) max{z1,22} =22 < 21 22 or |z1| < |22l

Lemma 2.2 ([87]). Let z1, 22, 23,... € C and the partial order relation
= be defined on C. Then the following statements are satisfied:
(i) If z1 2 max{zo, 23} then z1 3 2o if 23 3 22,
(ii) If z1 S max{za, 23,24} then z1 3 29 if max {z3,24} 3 29,
(iii) If 21 2 max {29, 23, 24, 25} then z1 3 zo if max{z3, 24,25} 3 22,
and so on.

Definition 2.3 ([3]). Let X be a nonempty set. A complex-valued
S-metric on X is a function S¢ : X x X x X — C that satisfies the
following conditions for all x,y, z,t € X:

(CS]') 0 j Sc'(Hf, Y, Z),

(CS2) S¢(z,y,2) =0if and only if x =y = z,

(CS3) SC(:L" Y, Z) r—j Sc(l‘, €, t) + SC(y7 Y, t) + SC(zv 2y t)'

The pair (X, S¢) is called a complex-valued S-metric space.

Example 2.4. Let X = C and the function S¢ : C x C x C — C be
defined by:

Sc(zl, Z29, 23) = |Re(z1) — Re(23)| + ‘RQ(ZQ) — Re(zg)\
+i([Im(z1) — Im(z3)| + [Im(z2) — Im(z3)|,

for all z1, 22,23 € C. Then, it is easy to see that the function S¢ is a
complex-valued S-metric on C.
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We use the following definitions and lemmas in the next sections.

Definition 2.5 ([I3]). Let (X, S¢) be a complex-valued S -metric space.
Then

(i) A sequence {z,} in X converges to x if and only if for all €
such that 0 < € € C there exists a natural number ng such that
for all n > ng, we have S¢(zy, 2y, ) < € and it is denoted by

lim z,, = x.
n—oo

(ii) A sequence {z,} in X is called a Cauchy sequence if for all €
such that 0 < € € C there exists a natural number ng such that
for all n,m > ngy, we have S¢(pn, Tn, Tm) < €.

(iii) A complex-valued S-metric space (X, S¢) is called complete, if
every Cauchy sequence is convergent.

Definition 2.6 ([3]). Two families of self-mappings { i}/, and {g; }I" ;
are said to be pairwise commuting if the following three conditions hold:

(1) flfj = f]fl for all i,j € {1,2, .. .,m},

(ii) grgi = gigr for all k,l € {1,2,...,n},

(iil) figr = g fi for alli e {1,2,...,m} and k € {1,2,...,n}.

Lemma 2.7 ([13]). Let (X,S¢) be a complex-valued S-metric space
and {x,} be a sequence in X. Then {x,} converges to x if and only if
|Sc(xn, Tn, z)| = 0 as n — oo.

Lemma 2.8 ([13]). Let (X,S¢) be a complex-valued S -metric space
and {x,} be a sequence in X. Then {x,} is a Cauchy sequence if and
only if |Sc(Tn, Tny Tnym)] — 0 asn — oo .

Lemma 2.9 ([13]). If (X,Sc) be a complez-valued S -metric space then

Se(z,z,y) = Sc(y,y,2),
for all z,y € X.

Corollary 2.10 ([I3]). If f is a self-mapping on a complete complex
valued S-metric space (X,Sc) that satisfies

SC(fnq:v fnxa fny) j hSC(CC, xz, y)7
for all z,y € X and h a nonnegative real number such that h <1 | then
f has a unique fized point in X.

If we take n = 1 in Corollary 210, then we have the Banach’s con-
traction principle on a complex-valued S-metric space as seen in the
following theorem:

Theorem 2.11. Let (X,S¢) be a complete complex-valued S -metric
space and f be a self-mapping of X satisfying

(21) SC(fxafl"fy)thC(‘rvxay);
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for some h € [0,1) and all x,y € X. Then f has a unique fixed point in
X.

Notice that there exists a self-mapping f which has a fixed point, but
it does not satisfy Banach’s contraction principle on complex-valued S-
metric spaces as we have seen in the following example:

Example 2.12. Let X = C and the function § : C x C x C — C be
defined
80(21722723) = ‘2’1 — 23| + ‘21 + 23 — 22’2‘ ,
for all z1, 29, 23 € C. Then the function S is a complex-valued S-metric
on C. Let us consider
fz=1-—z.
Then f is a self-mapping on the complete complex-valued S-metric space
1
[0,1]. f has a fixed point z = 3 but f does not satisfy the Banach’s

contraction principle.

Hence it is important to study some new fixed point theorems.

3. A NEw GENERALIZED FIXED POINT THEOREM

In this section, we prove a new generalization of the well known Ba-
nach’s contraction principle using the notion of a complex-valued S -
metric space.

Let (X,Sc) be a complex-valued S-metric space and f be a self-
mapping of X. There exist real numbers a, b satisfying a + 3b < 1 with
a,b > 0 such that

(31) Sc(fa:,fx,fy)jaSc(m,m,y)—i—bmax{ Sc(fﬂf,fl'7l'),30(fx,fx,y)7 }7

Sc(fy7fy7y)780(fy7fy7x)
for all x,y € X.

Theorem 3.1. Let (X, S¢) be a complete complex valued S-metric space
and f be a self-mapping of X. If f satisfies the inequality (B3), then f
has a unique fized point in X.

Proof. Let xp € X and the sequence {z,} be defined as follows:
fMxg = z,.

Suppose that x,, # xp41 for all n. From the inequality (B0), we get

So (T, Tn, Tnt1) = So(frn—1, fTn-1, frn) 3 aSc(Tn-1,Tn-1,%n)

—I—bmax SC(JIn,xn,xn_1)780($n,$n,xn),
SC’(LL’n+1, Tn+1, xn)a SC(xn-i-h Tn+1, xn—l)

= (ISC(ZL‘nfl, Tn—1, mn)
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Sc(Tn, Tn, Tn-1),
+bmax<{ Sc(Tp+1, Tntl, Tn),
Sc(Tn+1, Tpt1, Tn-1)
= aSc(Tn—1,Tn—1,%n) + bav.
Then using the condition (CS3), we get
|Sc(@n, Tny Tnt1)| < a|Sc(Tp—1, Tn—1,2n)| + bl
< alSc(Tn-1,Tn-1,Zn)| + 2b|Sc(Tnt1, Tni1,xn)|
+b0|Sc(xn—1,2n-1,24)|,
and so using Lemma 9, we have
(1 —20) [Sc(zn; T, Tnt1)| < (@ +0) [Se(Tn—1, Tp—1,2n)|,
which implies
a+b
1—-2b
Let 8 = ijbb. Since a + 3b < 1, < 1. Using the inequality (B2), we
obtain
(3.3) Sc(@n, Tny Tny1)| < B [Sc (o, 20, 21)] -

Now we prove that the sequence {x,} is Cauchy. For all n,m € N,
n < m, using the inequality (B=3), we find

(3-2) ‘SC(xnvxnyl'n—i-l)‘ < ’SC(xn—lyxn—laxn)’ .

5n

1-p

Therefore |S¢ (@, Tn, Tm)| — 0 as n,m — oo. Consequently, {z,} is
a Cauchy sequence. Using the completeness hypothesis, there exists

x € X such that {z,,} — z. Now, we show that x is a fixed point of f.
Suppose that fz # x. Then using the inequality (B), we have

Sc(xn, T, fr) =Sc(frn-1, frn-1, fr) 3 aSc(Tp—1,Tn—1,T)
Sc(®n, Tn, Tn-1),Sc(Tn, Tn,x),
+ bmax{ Sggfm,fx,x),‘ls)c(fc;;(, fm,xnl)) }’
and so taking limit for n — oo, we get
Sco(x,z, fx) 2 bSc(fz, fx,x),
and by Lemma 29, we obtain
S (fz, fz,2)| < blSc(fz, fz,z)|,

which implies fx = x, that is, x is a fixed point of f. Now, we prove
that the fixed point x is unique. Suppose that y is another fixed point
of f such that x # y. Using the inequality (B) and Lemma P79, we get

SC’(fxa fmvfy) = SC(ZL‘,IE,y) r_\<1 aSC(xaxay)

|SC(xnaxn7xm) S |SC(‘T07$07$1)’-
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SC(Q:,CL',I),SC(I’,CL‘,ZJ), }
SC(ya Y, y)aSC(yaya:E)
— (a + b)SC(iU,l’,y),

+ bmax{

and so
So(z, z,y)| < (a+b)|Sc(z, 2,y)],
which implies x = y since a + b < 1. Consequently, x is the unique fixed

point of f. O

Remark 3.2. 1. Theorem BTl is a generalization of the Banach’s
contraction principle on a complete complex-valued S-metric
space.

2. If we take the function S¢ : X x X x X — [0, 00) in Theorem B
then we get Theorem 1 given in [[I7] on page 233 on a complete
S-metric space.

3. If we consider Example 1 given in [I7] on page 236, then we see
an example of a function that satisfies the inequality (B) but
not satisfy the Banach’s contraction principle.

4. SOME NOTIONS ON COMPLEX-VALUED S-METRIC SPACES

In this section, we introduce new concepts on a complex-valued S-
metric space. We give the definitions of C'S-weakly computing and C'S
-compatible mappings and investigate the relationships between them.

We begin the following definitions.

Definition 4.1. Let (X,S¢) be a complex-valued S-metric space and
f,9 : X — X be two mappings. Then f and g are called CS -weakly
commuting if and only if

Sc(fgz, fgz,9fx) 3 Sc(fz, fz, gz),
for all x € X.
Definition 4.2. Let f and g be self-mappings of a complex-valued S-

metric space (X, S¢). The mappings f and g are called C'S -compatible
if
lim Sc(fgn, fgzn, 9fzn) =0,
n—oo
whenever {z,}>° is a sequence in X such that
Jim fon = Jim gon =t

for some x € X.

Notice that every C'S-weakly commuting mappings are C'S-compatible.
If f and g are two mappings of X into X such that

lim SC(fxnv fxna gxn) = 07
n—00
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this implies
lim SC(fgl'nv fgl'n?gfl‘n) = Oa
n—oo
and so the mappings f and g are CS-compatible. But every CS -

compatible mappings are not always CS-weakly commuting as seen in
the following example:

Example 4.3. Let X = C and f, g be two self-mappings of C such that
fz= 22

and
gz = éit22,
for some fixed t € R, t # 2kw, k € Z, respectively.
Let us consider the function Sg : C x C x C — C defined by

Sc(z1, 22, 23) = |21 — 23] + |22 — 23],

for all z1,29,23 € C. Then S¢ is a complex-valued S-metric which
is called complex valued usual S-metric. It can be easily seen that
the functions f and g are C'S-compatible but they are not C'S-weakly
commuting.

Definition 4.4. Let (X,S) be a complex-valued S-metric space and
f X — X be amapping. f is called CS-orbitally continuous if g € X

such that g = lim f™x for some x € X, then fxg = lim ff™x.
1—00 1—00

Now, we define the concept of C'S-weakly compatibility.

Definition 4.5. Let (X, S) be a complex-valued S-metric space and f,
g be two self-mappings of X. Then the pair (f,g) is called CS-weakly
compatible if fgr = gfx whenever fx = gx for all z € X.

5. A CoMMON FIiXED PoOINT THEOREM

In this section, we obtain a new common fixed point theorem using
the notions of C'S-weakly compatibility and commuting pair for six self-
mappings on a complete complex-valued S-metric space.

Theorem 5.1. Let (X, S¢) be a complete complex-valued S-metric space
and f,q,h,k,l,m be six self-mappings of X satisfying the following con-
ditions:

(5.1) f9(X) C h(X), kI(X) C m(X)

and

(5.2)  Sc(klx,klx, fgy) 3 aSc(hx, ha, my)
+ b[Sc(ha, ha, klx) + Sc(my, my, fgy)]
+ c[Sc(ha, ha, fgy) + Sc(my, my, klz)],
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for all x,y € X, where a,b,c > 0 and a + 2b+ 3c < 1. Assume that
(fg,m) , (kl,h) are CS-weakly compatible and the pairs (f,g), (f,m),

(f,h) » (g.m), (g,h), (K1), (K h), (K f), (k.g), (L,h), (I, f), (I,9),
(m, k) and (m,l) are commuting pairs of mappings. Then f,g,h,k,l,m
have a unique common fized point in X.

Proof. Let xg € X and a sequence {y,} in X be defined as follows:

(5.3) Yon = klwon = mTony1 and yopt1 = f9Tont1 = hono,
for all n = 1,2, 3... by the condition (5). Using the inequality (5=2) we
have
(5.4)
Sc(Yans Y2n, Yon+1)
= Sc(klxay, klxoy, fgront1) 3 aSc(hxay, hxo,, mTon,i1)
+ b[Sc(hl'Qn, ]’L.CCQn, k’lxgn) + SC (mx2n+1, mIon4i, fg.CCQn_H)]
+ c[Sc(h@on, hron, f9Tont1) + So(MTont1, MT2n41, klzan)]
= aSc(Y2n—1,Y2n—1, Y2n)
+ b[Sc(Y2n—1,Y2n—1, Y2n) + Sc(Y2n, Y2n, Y2nt1)]
+ c[Sc(Yan—1, Y2n—1,Y2n+1) + Sc(Yan, Y2n, Y2n)]-
Using the condition (CS3) and Lemma P9, we obtain
(5.5)  Sc(yan—1,Y2n-1,Y2n+1) 3 28c(Y2n—1,Y2n—1, Y2rn) + Sc(Y2n, Y2n, Y2r+1)-
By the inequalities (64) and (b3) we get
Sc(Yan, Yon, Yont1) 3 (a+ b+ 2¢)Se(Yan—1, Y2n—1, Y2n)
+ (b + ¢)Sc(Y2n, Y2n, Yon+1),

which implies

a+b+ 2c
Sc(Y2n, Yon, Yon+1) 3 1_717_630@2%1, Yon—1,Y2n),
and so
|Sc (Y2ns Yon, Yan+1)| < t1Sc(Yan—1,Yon—1, Y2n)| ,
b+2
where t = a+btze < 1.
1-b—c

By a similar way as above we obtain

|Sc(Yon+1, Y2n+1, Yon+2)| < t|1Sc(Yan, Yon, Yon+1)| -

Hence we get

|Sc(Y2n+1, Yan+1, Yan+2)| < t|Sc(Y2n, Y2n, Yant1)|

S tn+1 \Sc(?JO?yO’yl)’ ’
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forn=1,2,3,....
Now for all m > n we have
n

T 5S¢ o, Yo, y1) + "L Se (Yo, yo, 1),

Sc (yn7 Yn, yn+m) ,_5,

and so
n

ot _
IS (Yn, Yns Yntm)| < ISc(vo, yo, y1)| + "™ Se (o, vo, v1)| 5

1—-1
which implies |Sc(Yn, Yn, Yn+m)| — 0 as n,m — oo. Hence the sequence

{yn} is a Cauchy sequence. Since (X, S¢) is a complete complex-valued
S-metric space, there exists a point w in X such that

lim klxo, = lim mzon+1 = lim fgxon11 = lim haoy o = w.
n—oo n—o0 n—oo n—o0

Also there exists a point u € X such that hu = w since fg(X) C h(X).
Using the inequality (52) we have
So(klu, klu,w) 3 28c(klu, klu, fgzon—1) + Sc(w, w, fgran—1)
2 2(aSc(hu, hu, mxa,—1)
+ b[Sc (hu, hu, klu) + Sc(mzon—1, mxon—1, fgTom—1)]
+ c[Sc(hu, hu, fgron—1) + Sc(mzon—1, mzon—_1, klu)))
+ Se(w, w, fgran—1).
Hence taking limit for n — oo we obtain
Sc(klu, klu, w) = 2(b+ ¢)Sc(klu, klu, w),
and so
|Sc (klu, klu, w)| < 2(b+ ¢) [So(klu, klu,w)],
which is a contradiction since 2b 4 2¢ < 1. Therefore klu = hu = w.
There exists a point v in X such that mv = w since kl(X) C m(X).
Using the inequality (54) we have
Sc(w,w, fgv) = Sc(klu, klu, fgv) 3 aSc(hu, hu, mv)
+ b[Sc(hu, hu, klu) + Sc(mv, mo, fgv)]
+ c[Sc(hu, hu, fgv) + Sc(mv, mv, klu)]
= aSc(w,w, w)
+ b[Sc(w, w, w) + Sc(w, w, fgv)]
+ c[Sc(w,w, fgv) + Sc(w, w, w)]
— (b+ Sc(w, w, fgv)
and so
So(w, w, fgv)| < (b+¢) [Sc(w,w, fgv)l,
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which is a contradiction since b+ ¢ < 1. Then fgv = mv = w = klu =
hu.

Since h and kl are C'S-weakly compatible mappings of X, we have
klhu = hklu and so klw = hw. Now we prove that w is a fixed point of
kl. Using the inequality (B2), we have

Sc(klw, klw, w) = S¢(klw, klw, fgv) 3 aSc(hw, hw, mv)
+ b[Sc(hw, hw, klw) + Sc(mv, mv, fgv)]
+ c[Sc(hw, hw, fgv) + Sc(mv, mv, klw)]
= aSc(w,w, klw)
+ b[Sc (klw, klw, klw) + Sc(w, w, w)]
+ c[Sc(klw, klw, w) + Sc(w, w, klw)]
= (a + 2¢)Sc (klw, klw, w),
and so
|Sc (klw, klw,w)| < (a4 2¢) |Se(klw, klw,w)],
which is a contradiction since a + 2¢ < 1. Therefore klw = w and
klw = hw = w.

Similarly, m and fg are C'S-weakly compatible mappings of X and
we have fgw = mw. Now we show that w is a fixed point of fg. Using
the inequality (B=2) we get

Sc(w,w, fgw) = Sc(klw, klw, fgw) 3 aSc(hw, hw, mw)
+ b[Sc (hw, hw, klw) + Sc(mw, mw, fgw)]
+ ¢[Sc(hw, hw, fgw) + Sc(mw, mw, klw)]
= aSc(hw, hw, fgw)
+0[Sc(w, w,w) + Sc(fgw, fgw, fgw)]
+ c[Sc(w, w, fgw) + Sc(fgw, fgw, w)]
= (a+2¢)Sc(w,w, fgw),
and so
|Sc(w, w, fgw)| < (a + 2¢) [Sc(w, w, fgw)],
which is a contradiction since a + 2¢ < 1. Therefore fgw = w and
fgw = mw = w. Hence we obtain

klw = fgw = hw = mw = w.

Consequently, w is a common fixed point of the mappings ki, fg, h
and m. Now, we prove that w is a unique common fixed point of the
mappings kl, fg, h and m. Let w* be also a common fixed point of kl,
fg, h and m. Using the inequality (B2)

Sco(w,w, w*) = Sc(klw, klw, fgw™)
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= aSc (hw, hw, mw™)
+ b[Sc (hw, hw, klw) + Sc(mw™, mw*, fgw™)]
+ c[Sc(hw, hw, fgw*) + Sc(mw*, mw*, klw)]
= (a+2¢)Sc(w,w,w"),
and so
|Sc(w, w, w*)| < (a+ 2¢) |Sc(w, w, w*)],

which is a contradiction since a 4+ 2¢ < 1. Hence we obtain w = w*.

Now, we show that w is the unique common fixed point of the six
mappings f , g, k, [, h and m. Using the commuting conditions of the
pair (f,g) we have

fw = f(fgw) = f(gfw) = fg(fw),
and

gw = g(fgw) = gf(gw) = fg(gw),
which implies that fw and gw are fixed points of the mapping fg.

Similarly, fw and gw are common fixed points of the mappings ki, h
and m using the hypothesis. Using the hypothesis, also by a similar way
we obtain kw and [w are common fixed points of the mappings ki, fg,
h and m. Consequently, by the uniqueness of the common fixed point,
we get
hw =mw = fw =gw = kw = lw = w,

that is, f, g, k, [, h and m have a unique common fixed point w in
X. O

6. SOME APPLICATIONS OF COMMON FIXED POINT THEORY IN
VIEwW OF CLOSED BALL

Let (X, S¢) be a complex-valued S-metric space. For 0 < rand z € X
the open ball BS (z,7) and closed ball B[z, r] with center  and radius
r are defined as follows, respectively:

BS(z,r) ={y € X : So(y,y,x) <},
BY[z,r] ={y € X : Sc(y,y,2) S}

A point x € X is called an interior point of a set A C X, if there
exists 0 < r € C such that

BY(x,7) C A.
A point z € X is called a limit point of A whenever we have
B (z,r) N (A~ {z}) # 0,
for every 0 < r € C.
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A subset A C X is said to be open if each element of A is an interior
point of A.

Example 6.1. Let X = C and the complex-valued S-metric be defined
by

(61) 80(21,22,23) = |21*22|+|ZQ*23|+‘23*Z’1|,

for all 21, 22,23 € C (using the definition of S-metric generated by S-
norm given in [? |). If we choose z = z + iy, 2o = 3 + 2¢ and r = 30 in
C then we obtain

BS 20,7 ={2€C:/(x —3)2+ (y — 2)2 < 15}.

Now we recall the notion of a complex-valued metric space.
Let X be a non-empty set and do : X X X — C be a mapping. Then
d. is called a complex-valued metric if
(i) 0 S do(z,y) for all z,y € X,
(ii) do(z,y) = 0 if and only if z = y,
(iii) do(z,y) = do(y, z) for all z,y € X,
(iv) de(z,y) 2 do(z, z) +do(z,y) for all z,y,z € X,
and (X, d¢) is called a complex-valued metric space [5].
Now, we give relationships between complex-valued metric and complex-
valued S-metric.

Let (X,dc) be a complex-valued metric. Then the function Sg, :
X x X x X — C defined by

Scd($»?/, Z) = dC(ma Z) + dc(y7 Z)?

for all x,y,z € X is a complex-valued S-metric. We call this complex
valued metric S¢, as the complex-valued S-metric generated by d¢.

Example 6.2. Let X = C and

3
r1 — X
do(z1,22) = \/(192) +4(y1 — y2)?,

for all z1, 29 € C where z1 = (21,y1) and 2o = (x2,y2). Then (X, d¢) is
a complex-valued metric space. Therefore the complex-valued S-metric
generated by d¢ is defined by

(6.2) Sc, (21, 22, 23) = do(21, 23) + do(22, 23),

for all z1, z9, 23 € C where z3 = (x3,y3).
The closed ball Bg [20,7] in C is an ellipse given by

Bg[zo,r] ={2€C:S8¢,(z2,2) Zr}
={z € C:2do(z,20) 37}



96 N. TAS AND N. Y. OZGUR

If we choose z = x + iy, z9p = 2 + 3¢ and » = 10 then we obtain
—92)2
BS [z0,7] = {ZE(C:\/(xE))+4(y—3)2j5}.

We give the following theorem on the closed ball BS [z, r].

Theorem 6.3. Let (X,Sc) be a complete complex-valued S-metric space,
x9g € X, 0 < r € C and a,b,c,d,e be five real numbers such that
a,bye,d,e > 0 and a+b+c+3d+3e < 1. Let f,g: X — X be
two mappings satisfying
Sc(fz, fr,2)Sc(9y, 9y, )
6.3)  Sc(fxz, fz,gy) 3 aSc(z,z,y) +b
( ) C(fl' f:E gy) a C(l' x y) 1+Sc($,$,y)
Sclfz, fx,y)Sclgy, 9y, 2)
1+ Sc(-TU,.CIZ', y)
Sc(fx,fx,x)sc(gy,gy,x)
1+ Sc(-TU,.CIZ', y)
Sc(fz, fz,y)Sc(9y, 9y, y)
1+ Sc(x,x,y)

+d

+e

)

for all z,y € Bg[xo,r}. If

(6.4) So(fo, fro.z0)| < L=

7]

a+2d a+2e
1-b—d 1-b—e
mon fized point w € BS [0, 7] of the self-mappings f and g.

where h = max {

}, then there exists a unique com-

Proof. Let xp € X and the sequence {x,} be defined as follows:

Top+1 = [xor and Togro = gTok41,
where k = 0,1,2,.... We show that z,, € BS[xg,7] for all n € N by
mathematical induction. Using the inequality (64) and h < 1 we get
Sc(fxo, fro,zo)| < |rl,

which implies that z1 € BS [z, 7].

Let xo,...,7; € Bg[l’o,?“] for some 1 € N. If 1 = 2k + 1 where
k=0,1,2,... "~
inequality (623) we have

1 j— 2
ori:2k+2wherek:0,1,...,l 5 , using the

Sc(%ok+1, Tokt1, T2k42)
= Sc(f$2k, f$2k,9$2k+1) j CLSC(!E%, T2k 1‘2k+1)

SC(f$2ka fxog, ka)SC(gl'Qk—l—la 9T2k+1, £E2k+1)
1+ Sc(xok, Tok, Tok41)

+b
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CSO(fx%, fxok, Tor+1)Sc(9Tok+1, 9T2k41, Tok)
1+ Sc(z2k, Tak, Tok+1)
Sc(frok, fron, Tor)Sc(9T2k41, 9T2k+1, T2k )
1+ Sc(zok, Tok, Tok+1)
Sc(fzak, fror, Topt1)Sc(9T2k+1, 9T2k+1, T2k+1)
1+ Sc(z2k, Tak, Tok+1)

+d

+e

M
and so

Sc(T2k+1, Tokt1, Tokt2)
= aSc(@ak, Tk, Tokt1)
Sc(fror, fror, Tor)Sc(9Tak+1, GT2k+1, Tok+1)
1+ Sc(wak, o, Tokt1)
Sc(frak, frar, Tor)Sc(9T2k+1, 9T2k+1, Tak)
1+ Sc(xak, T2k, Tok+1)

+b

+d

which implies

|Sc(@ak41, Tokt1, Tokt2)]
< a|Sc(Tor, Tok, Tok+1)|
\Sc(fxor, fror, Tar)| |Sc(9T2k41, 9Tok 11, T 1)]
|1+ Sc(wok, Tog, Top41)|
|Sc(frag, fror, or)| |Sc(9Tak+1, 9T2k+1, T2k)|
|1+ Sc(wak, Tog, Tog+1)]
< a|Sc(Tok, Tok, Tok+1)|

+b

+d

|Sc(Tak+1, Takt1, Tar)| [Sc(T2r42, Tart2, Tar1)]
\Sc (@K, Tok, Tokt1)|
|Sc(Tak+1, T2r+1, Tok)| [So(T2k42, Tak+2, Tar)|
|Sc(z2k, Tok, Tak+1)|

+b

+d

Using Lemma IZ9 we have

|Sc(@ak+1, Tak+1, Tagr2)|
< a|Sc(Tak, Tak, Tary1)| + b|Sc(Torr2; Takt2, Tory1)]
+ d|Sc(Tok+2, Tokr2, Tok)| -

Using the condition (CS3) and Lemma 279 we get

Sc(Taky2, Takt2, Tok) T 2S¢ (Tak, Tok, Takt1) + Sc(Toak+2, Tak+2, T2k41),
and

a+2d
(6.5)  |Sc(@opt1, Topt1, Topt2)| < T 4 |Sc(wag, Tog, Toni1)| -
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By a similar way as above we obtain
a+ 2e
(6.6) [Sc(warre, Tokra, Takrs)l < 75— 1S (@2kr1, Tanr1, T2n42)|

a+ 2d a+ 2e
1—-b—d’'1—-b—ce¢

If we put h = max { } we have

Sc(zi, iy wiv1)| < B |Sc(zo, 0, 71)]
for all 2 € N. Let us consider
|SC(ZEO,.CL'O,CL'1'+1)|
< 2|Sc(xo, xo, 1) 4 2|Sc(x1, w1, 22)| + - - - + [Sc (@i, 24, Tig1)]

< 2[Sc (w0, x0, 1) (L + A+ -+ h'™1) + 1 |Sc (20, 20, 71)|

1-h , 1—h
5 r[(L+h+-+ R+ h——

<l =m) (A +h+- 40 <|rl,

<2

which implies z;+1 € BS [zg,7]. Hence z,, € BY[xo,r] and
|SC(33n, Ln, xn+1)| S hn |SC(1'0a Zo, CCl)| )

for all n € N.
If we take m > n then we have

‘SC(xm Tn, xm)’ <2 ‘SC(-Tna Tn,s xn—f—l)‘ +2 ’SC(mn—i-lv Tn+1, xn+2)’
+ -+ ’SC(xm—lyxm—lvxm)‘ — 07
as m,n — oo, which implies that the sequence {x,} is a Cauchy sequence
in BS [wo,7]. Hence there exists a point w € B [z¢, 7] with lim z,, = w.
n—oo

Now we prove fw = w. Using the inequality (633) we have

ISc(fw, fw,w)| < 2|Sc(w,w, Togr2)| + |Sc(Tort2, Tort2, fw)]
= 2|Sc(w,w, zort2)| + |Sc(fw, fw, grori1)|
3 2(Se(w, w, 2ok 42)| + a|Sc(w, w, ox11)]
ISc(fw, fw,w)||Sc(gzakr1, 9Tak+1, Tar+1)]
11+ So(w, w, Top41)]
C\Sc(fwa Jw, xop 1) |Sc(9Tar41, 9Tok41, W)|
11+ So(w, w, x2141)|
ISc(fw, fw,w)||Sc(9r2k+1, 9Tak+1, w)|
11+ So(w, w, Top41)]
Sc(fw, fw, vy 1)| |Sc(9Tor11, 9Tar+1, Tar41)]
11+ So(w, w, To41)]

+b

+

+d

+e

I
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which implies that this inequality converges 0 as n — co. Therefore we
obtain |S¢(fw, fw,w)| = 0, that is, fw = w. By a similar way as above
we show that gw = w.

Now we prove that the fixed point w is unique. Assume that w* €
Bg [0, 7] is also a common fixed point of f and g. Then we have

|Se(w, w, w¥)| = [Sc(fw, fw, gw")|
< CL‘SC(?,U,U},QU*”

|SC(f’UJ, f’UJ, ’UJ)| |SC(gw*7 gw*7 ’UJ*)|
|1+SC(w7w7w*)|

|SC(fw7 fwv W*)| |SC(QW*7 gw*a w)|
‘1+SC(’UJ,’[U,’LU*)|

|SC(fw7 fwv 'LU)| |SC(.gw*a gw*a w)|
|1 +SC(w7w7w*)|

e ‘Sc(fw, fw, w*)‘ ‘SC(g'LU*,gw*y w*)|

|1 +SC('LU,’UJ,’UJ*)| ‘

+b

+c

+d

+

Hence we get
|So(w, w, w*)| < (a + ¢) |Se(w, w, w*)],

since |1 + Se(w, w, w*)| > |Sc(w, w,w*)|. Therefore w = w* as a + ¢ <
1. Consequently, w is the unique common fixed point of f and g. Then
the proof is completed. O

Notice that if we put f = ¢g in Theorem G623, then we have the following
corollary.

Corollary 6.4. Let (X,S¢c) be a complete complex-valued S-metric space,
xg € X, 0 < r € C and a,b,c,d,e be five real numbers such that
a,bye,d,e > 0 and a+b+c+3d+3e < 1. Let f: X — X be a
mapping satisfying
SC(f:B: fxa l')SC(fy, fya y)

6.7 S < aS b
( ) C(fxafxvfy)wa C(ma$ay)+ 1+80(33,J),y)
SC(fxa fl', y)SC(fyv fyv JJ)

1+ SC($7 z, y)
SC(fxa fl', x)SC(fya fy7 :U)

1+ SC($7 z, y)

ESC(fx, fz,y)Sc(fy, fy,y)
1 —|—SC(.%',I',@/) ’

+c

+d

for all x,y € Bg[ajo,r}. If

1—-~h
|Sc(fxo, fro,z0)| <

7],
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a+2d a—+2e
1-b—d 1-b—e
point w € Bg[azo, r] of the self-mapping f.

where h = max{ }, then there exists a unique fized

Remark 6.5. If we choose c=0,d=0,c=d=0andc=d=e=0
in Theorem B3, then we have similar corollaries. Also if we take b =
¢ =d = e = 0 in Corollary B4, then we obtain a new generalization
of the classical Banach’s contraction principle on the closed ball in a
complex-valued S-metric space.

In the following example, we see that there exist a self-mapping sat-
isfying the conditions of Corollary 64 on C.

Example 6.6. Let X = C and the complex-valued S-metric on C be
defined

xr1T — X 2 To — X 2
Sc(z1,22,23) = \/(193) + 4y — y3)2+\/(293) +4(y2 — y3)?,

for all 21,22, 23 € C where 21 = (z1,y1), 22 = (22, ¥2) and 23 = (x3,¥3).
Let f: C — C be given by

fz =z,
for all z € C where 2 is the center of the closed ball BS[z9,7]. If we

1
puta:?b:c:d:e:0weobtain

1
SC(lea fZla fZQ) = 80(20520720) =0 j 550(21721722)5

for all 21,20 € BS[20,7]. Then the inequality (E72) is satisfied. Hence

we have
{ a+2d a4+ 2e } 1
h = max =a=3

1—b—d'1—b—ce
and

1
|Sc(fz0, f20,20)| =0 < 1 || .

Consequently, Corollary B4 is satisfied and there exists a unique fixed
point zg € Bg[zo, r] of the self-mapping f.

Now we give the following theorem using finitely many functions on
the closed ball B[z, 7].

Theorem 6.7. Let (X, S¢) be a complete complex-valued S-metric space,
{fiti<i<m and {g;}1<j<n are two finite pairwise commuting finite fami-
lies of self-mappings of X. If the mapping f and g, where f = f1fo...fm
and g = g192...gn Satisfy the inequalities (E23) and (B-4) in Theorem
then the component mappings of the families { fi}1<i<m and {gj}i1<j<n
have a unique common fized point.
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Proof. Using Theorem B3, we see that the mappings f and g have a
unique common fixed point w. Now we show that w is a common
fixed point of all the component mappings of the families { f; }1<i<m and
{9;}1<j<n. In view of pairwise commutativity of the families {f;}1<i<m
and {g;}1<j<n We get

frw = frfw = ffrw and frw = frgw = g frw,

for all 1 < k < m, which implies that frpw is also a common fixed point
of f and g. Using the uniqueness of the common fixed point we have
frw = w for all k. Hence w is a common fixed point of the family

{fihi<i<m-

Similarly, it can be seen that w is also common fixed point of the
famﬂy {gj}lgjgn- [l

Notice that if we take fi = fo=...= fn = fand g1 = go = ... =
gn = g in Theorem B33 we obtain the following corollary.

Corollary 6.8. Let (X,S¢) be a complete complex-valued S-metric space,
x9g € X, 0 < r € C and a,b,c,d,e be five real numbers such that
a,bye,d,e > 0 and a+b+c+3d+3e < 1. Let f,g: X — X be
two mappings satisfying

Sc(f"x, "z, 2)Sc(9"Y, 9"y, y)
1+ Sco(x,z,y)
Sc(fz, [z, y)Sc(9"y, 9"y, x)
1+ Sc(x,z,y)
Sc(f"x, f"x,2)Sc(9"y, 9"y, )

Sc(fml', fmx,gny) r—j GSC('Z'7 T, 3/) +b

+c

+d
1+ SC(JU, Z, y)
L Self™a, [, y)Sc(9"y, 9"y y)
(& ’
1+ SC(x7 x, y)
for all z,y € BY[xo,7] and
1-h

|SC(gnx07gnx07x0)‘ < |T| ’

a+2d a+2e
1-b—d 1-b—c¢
mon fized point w € Bg[xo, r] of the self-mappings f and g.

where h = max{ }, then there exists a unique com-

Also by setting m = n and f = g = h in Corollary 68 we obtain the
following corollary:

Corollary 6.9. Let (X,S¢) be a complete complex-valued S-metric space,
zg € X, 0 < 7 € C and a,b,c,d,e be five real numbers such that
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a,be,die > 0 and a+b+c+3d+3e < 1. Let h: X - X be a
mapping satisfying
Sc(h"x, h"x,x)Sc(h™y, h"y,y)
1+ Sc(x,z,y)
Sc(hz, h"x,y)Sc(h™y, h"y, )
1+ SC('T? €, y)
Sc(hz, h"x,x)Sc(h™y, h"y, x)
1+ SC(-T, €, y)
Sc(h"x, h"x,y)Sc(h™y, h"y, y)
]- +SC($7 x’ y) ’

Sc(h"z,h"x,h"y) 2 aSc(x,x,y) + b

+c

+d

+e

for all x,y € BY[zo,7] and
1-A

|Sc(h"xo, h"zo, x0)| < Ir|,

a+2d a+2e
1-b—d 1-b—c¢
point w € BY [xo, 7] of the self-mapping h.

where A = max{ }, then there exists a unique fized

7. CONCLUSIONS AND FUTURE WORKS

Recently, complex-valued S-metric spaces have been introduced and
studied to improve the Banach’s contraction principle and to generalize
some metric spaces such as metric and S-metric spaces. In this pa-
per, we have given some generalized common fixed point (resp. fixed
point) results on a complete complex-valued S-metric space using dif-
ferent techniques by means of new generalized contractive conditions
and the notion of the closed ball. Our results generalize and improve
some known fixed point results. More recently, the fixed circle prob-
lem has been introduced and studied as a new direction of extensions
(see [I4, M8-21, B1]). As a future work, new fixed circle results can be
investigated on a complex-valued S-metric space.
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