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Abstract. We first give a brief survey of the results on highly nonlinear single-
output Boolean functions and bijective S-boxes that are symmetric under some

permutations. After that, we perform a heuristic search for the symmetric (and

involution) S-boxes which are bijective in dimension 8 and identify correspond-
ing permutations yielding rich classes in terms of cryptographically desirable

properties.

1. Introduction

A vectorial Boolean function, also called a multi-output Boolean function or a
substitution box (S-box), with the number of input variables n and output variables
m is defined as a function from Fn2 to Fm2 . When m = 1, the corresponding function
is called a single-output Boolean function, or simply a Boolean function. Hence, an
S-box is composed of m Boolean functions, called coordinate functions, each with
n variables. (Vectorial) Boolean functions are crucial cryptographic primitives used
as building blocks in symmetric cryptosystems. For an S-box, high nonlinearity
and low differential uniformity are required to prevent linear [16] and differential [2]
cryptanalyses (in block ciphers), whereas for a Boolean function high nonlinearity is
a prerequisite for thwarting best affine approximation attacks [4] (in stream ciphers).
We mainly consider two challenging problems in symmetric cryptography:

• Construction of Boolean functions with an odd number n of variables, n ≥ 9,
achieving maximum possible nonlinearity,

• Construction of bijective S-boxes in even dimensions n=6 and 8, having high
nonlinearity and low differential uniformity.

In fact, most of the best known results regarding to these problems are either
symmetric under some permutations or affine equivalent to them. In this paper, we
first present a survey of the mentioned results in the related literature. Secondly, we
classify all 8! permutations up to the linear equivalence of S-boxes (in dimension 8)
that are symmetric under those permutations, which results in 22 different classes,
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and then identify rich classes in terms of desirable cryptographic properties by
performing the steepest-descent-like iterative search algorithm [1] in each class. We
also apply our search for the symmetric S-boxes that are involutions, which provides
better results in some cases.

2. Background

2.1. Boolean functions. The truth table of an n-variable Boolean function f :
Fn2 → F2 is given by the binary output vector of length 2n, i.e., f = [f(0, 0, . . . , 0),
f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)]. The Hamming weight wt(f) of f is defined as the
number of ones in its truth table and the Hamming distance d(f, g) between two
n-variable Boolean functions f and g is the number of positions in which their truth
tables differ, i.e., d(f, g) = wt(f ⊕ g). The function f is said to be balanced if the
respective truth table has the same number of ones and zeros, i.e., wt(f) = 2n−1,
which is a required property to avoid the statistical imbalance in the output of f .

A Boolean function f(x) can be represented by a multivariate polynomial over
F2, called the algebraic normal form (ANF),⊕

u∈Fn
2

au

(
n−1∏
i=0

xui
i

)
,

where x = (x0, x1, . . . , xn−1) ∈ Fn2 and au ∈ F2. The highest Hamming weight of u
with au 6= 0 is called the algebraic degree, or simply the degree, of f and denoted
by deg(f). To have good confusion properties, it is cryptographically desired to
achieve a high algebraic degree. A Boolean function with degree at most one is
called an affine function. Linear functions are those affine functions with constant
term equal to zero.

The Walsh-Hadamard transform Wf : Fn2 → [−2n, 2n] of an n-variable Boolean
function f is an integer valued function defined as

Wf (w) =
∑
x∈Fn

2

(−1)f(x)(−1)w·x,

where w · x = w0x0 ⊕ w1x1 ⊕ . . .⊕ wn−1xn−1 is the inner product of w = (w0, . . . ,
wn−1) and x = (x0, . . . , xn−1). The nonlinearity of an n-variable function f can
be expressed in terms of its Walsh-Hadamard spectrum, defined as the minimum
Hamming distance from the set of all n-variable affine functions, i.e.,

NLf = 2n−1 − 1

2
max
w∈Fn

2

|Wf (w)|.

2.2. S-boxes. An S-box S : Fn2 → Fm2 can be expressed as S(x) = (f0(x), f1(x),
. . . , fm−1(x)) ∀x ∈ Fn2 , where the functions fi : Fn2 → F2 for i = 0, 1, . . . ,m− 1 are
the coordinate functions. A linear combination c · S(x) of the coordinate functions
is called a component function, where c 6= (0, 0, . . . , 0) ∈ Fm2 . We are now ready
to extend the definitions of nonlinearity and algebraic degree to S-boxes using the
component functions. The nonlinearity of S is the worst (i.e., lowest) nonlinearity
among the 2m − 1 component functions, whereas the algebraic degree of S is the
highest one over all component functions.

The function S is called differentially δ-uniform if there are at most δ solutions to
the equation S(x)⊕S(x⊕γ) = β, where γ 6= (0, 0, . . . , 0) ∈ Fn2 and β ∈ Fm2 . Accord-
ingly, δ is called the differential uniformity of S. It is cryptographically desirable to
have a small differential uniformity as it implies that the probability of occurence
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of a particular pair (γ, β) is low; otherwise, a high occurence probability can be
utilized to realize a differential cryptanalysis. When n = m, the lowest achievable
value of δ is 2, and such functions are called almost perfect nonlinear (APN). For
even n, no APN functions had been known until, in 2009, a counterexample for
n = 6 was identified [3].

2.3. Symmetric (vectorial) functions. Let us consider the action of a per-
mutation group G on Fn2 . The set G(x) = {π(x) | π ∈ G}, where the group action
moves x ∈ Fn2 , is called the orbit of x. The orbits partition the vector space Fn2 by
defining the equivalence relation: x ∼ y if and only if there exists a permutation
π ∈ G such that π(x) = y for all x, y ∈ Fn2 . The number of orbits, denoted by gn,
can be determined by using Burnside’s lemma.

Lemma 2.1 (Burnside’s Lemma). If G is a finite group of permutations acting on
a set X, then the number of orbits of G on X is given by 1

|G|
∑
π∈G |Xπ|, where

Xπ = {x ∈ X|π(x) = x}.

The lexicographically least element belonging to the ith orbit, where 0 ≤ i ≤
gn − 1, is said to be the orbit representative and represented by Λi. A Boolean
function f : Fn2 → F2 is called symmetric under a permutation π if it is in-
variant under that permutation, i.e., f(π(x)) = f(x) for all x ∈ Fn2 . Clearly,
the number of Boolean functions which are symmetric under a permutation π
is 2gn and a Boolean function f among these can be represented by its outputs
(f(Λ0), f(Λ1), . . . , f(Λgn−1)) corresponding to the orbit representatives, which is
shorter than the ANF or truth table representations. It can be shown [22, Lemma
1] that Wf (u) = Wf (v) for any u, v belonging to the same orbit, implying that the
number of distinct values in the Walsh-Hadamard spectrum of f can be at most
gn. Using this fact, the Walsh-Hadamard transform of f can be computed [22]
efficiently as follows:

Wf (Λj) =

gn∑
i=1

(−1)f(Λi)Mi,j ,

where Mi,j =
∑
x∈G(Λi)

(−1)x·Λj defines a matrix M of size gn × gn.

One can extend [9] the definition of symmetric Boolean functions to the case when
the functions are vectorial. A vectorial function S : Fn2 → Fn2 is called symmetric
under a permutation π if S(π(x)) = π(S(x)) for all x ∈ Fn2 , that is, its output
is permuted by the permutation π when the same permutation is applied to the
corresponding input. The number of bijective S-boxes that are symmetric under an
arbitrary permutation can be found using the following proposition [9].

Proposition 1. Let S be a bijective S-box in dimension n, which is symmetric
under a permutation π. The number of such S-boxes is given by

d∏
i=1

ti!s
ti
i ,

where ti is the number of orbits having the same orbit size si and d is the number
of distinct orbit sizes.

It can be shown [9] that the component functions u · S(x) and v · S(x) are linear
equivalent when u and v belong to the same orbit, and hence there can be at most
gn−1 component functions which are not affine equivalent. This provides an efficient
way to compute the nonlinearity of S, as we need to compute the nonlinearities of
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Table 1. A summary of the highest nonlinearities for odd n ≥ 9.

Number of variables (n) 9 11 13 15
Bounds

Bent concatenation bound
240 992 4032 16256

(2n−1 − 2
n−1
2 )

Upper bound
244 1000 4050 16292

(2
⌊
2n−2 − 2

n
2−2

⌋
)

Unbalanced nonlinearities
[18] − − − 16276
[13] 242 996 4040 −

Balanced nonlinearities
[15] − − 4036 −
[20] − − − 16272

only the gn − 1 component functions to determine it. On the other hand, it should
be noted that S can be represented by the coordinate function(s) for which the
coefficient vector(s) is/are the orbit representative(s) with weight one.

3. Highly nonlinear Boolean functions

For an even number n of variables, the upper bound 2n−1−2
n
2−1 on nonlinearity,

which can be obtained by using the Parseval’s theorem, is attained by the so-called
bent functions. One can see that the concatenation of two (n − 1)-variable bent
functions with proper weights constructs a balanced n-variable Boolean function

having nonlinearity 2n−1−2
n−1
2 , which is called the bent concatenation bound. This

bound had been conjectured to be the achievable upper bound on nonlinearity for
odd number of variables, until disproved in 1983 [18]. The problem of determining
the maximum possible nonlinearity for an odd number n of variables is also related
to the covering radius of the first order Reed-Muller codes of length 2n. Recall
that the covering radius of a code is defined as the smallest integer R such that the
whole space is covered by the spheres of radius R centered at codewords. In our
situation, there are 2n codewords, each being an affine function, and the space size,
i.e., the number of Boolean functions, is 22n

. It was shown [8] that R can be at
most 2

⌊
2n−2 − 2

n
2−2

⌋
for the first order Reed-Muller codes of length 2n, which can

be considered as an upper bound on nonlinearity of n-variable Boolean functions.
For odd number of variables, we summarize in Table 1 the best known nonlin-

earities of (balanced and unbalanced) Boolean functions together with the upper
and bent concatenation bounds. For odd n ≤ 7, it was known that the achievable

nonlinearity can be at most equal to the bent concatenation bound 2n−1 − 2
n−1
2 .

In 1983, for the first time the existence of Boolean functions with an odd number
of variables having nonlinearity greater than the bent concatenation bound was
shown in [18] by identifying two functions with 15 variables attaining nonlinearity

215−1 − 2
15−1

2 + 20 = 16276 within the idempotent class (a function f : F2n → F2

is called idempotent if f(α2) = f(α) for all α ∈ F2n). It can be shown that us-
ing direct sum of an m-variable bent function and one of these two functions, it is

possible to construct Boolean functions with nonlinearity 2n−1 − 2
n−1
2 + 20 · 2n−15

2 ,
n = m+ 15, for odd n ≥ 15.
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As it is pointed out in [6, 7], by a proper choice of basis, the idempotents can
be considered as Boolean functions which are invariant under the cyclic rotation of
input variables, and such Boolean functions are called rotation-symmetric. Boolean
functions with number of variables n < 15 having nonlinearity exceeding the bent
concatenation bound were unknown until 2006, when 9-variable Boolean functions

with nonlinearity 29−1 − 2
9−1
2 + 1 = 241 were identified [12] by using a heuristic

search (the steepest-descent-like iterative search algorithm) in the class of rotation-
symmetric Boolean functions (RSBFs) for which the space size is 260. Later it was
found [11] that in this class there are 1512 RSBFs with nonlinearity 241, among
which there are only 2 which are different up to affine equivalence, and there is no
RSBF with nonlinearity exceeding 241. Shortly after that, the nonlinearity result
was improved [13] to 242 by generalizing the class of RSBFs as k-rotation-symmetric
Boolean functions (k-RSBFs). An n-variable Boolean function is called k-rotation
symmetric if

f(x0, x1, . . . , xn−1) = f(x(0+k) mod n, x(1+k) mod n, . . . , x(n−1+k) mod n)

for all (x0, x1, . . . , xn−1) ∈ Fn2 , where k is a fixed divisor of n. It can be shown
that the class of k-RSBFs can be regarded as a generalized class of idempotents

for which the functions f : F2n → F2 satisfy the condition f(α2k

) = f(α) for all
α ∈ F2n . Note that when k = 1, the class of k-RSBFs is the same as the class of
RSBFs.

In fact, since nonlinearity is invariant under liner transformations, all 9! permu-
tations are classified in [13] up to the linear equivalence of Boolean functions that
are symmetric under them, by using the following proposition.

Proposition 2. Let f and g be symmetric Boolean functions under permutations
πf and πg, respectively. If A : Fn2 → Fn2 is a bijective linear mapping such that
f = g ◦A, then πf = A−1 ◦ πg ◦A.

Then it is found [13] that there are 30 classes which are different up to the
equivalence relation defined by πf ∼ πg if and only if there exists A such that
πf = A−1 ◦πg ◦A. Boolean functions with nonlinearity 242 could be attained in [13]
within 4 of these classes (one of which is 3-RSBFs) by performing the steepest-
descent-like iterative search algorithm. Using one of these functions, one can get

Boolean functions with nonlinearity 2n−1−2
n−1
2 +2·2n−9

2 for odd n ≥ 9 via the direct
sum method, and hence the nonlinearity results 996 and 4040 are obtained [13] for
n = 11 and 13, respectively, as shown in Table 1. However, these functions are
unbalanced since the functions with nonlinearity 242 are unbalanced.

Balancedness is an important cryptographic property to avoid statistical imbal-
ance in the output of a Boolean function. Balanced functions with nonlinearity
greater than the bent concatenation bound have received a lot of attention in the
literature. To construct such functions the aforementioned unbalanced functions in
Table 1 can be exploited. In [13], using one of the functions with nonlinearity 242,
a 13-variable Boolean function f with nonlinearity 4040 and Hamming weight 4088
was first constructed. Then a balanced 13-variable function with nonlinearity 4034
could be generated [14] by performing a random search which flips 8 zeros to ones
in the truth table of f . This result was later improved in [15] to 4036 by using
a heuristic search. The balanced function with nonlinearity 16272 was obtained
in [20] by interpreting the unbalanced construction with nonlinearity 16276 as an
RSBF. By performing an exhaustive search in a suitably chosen neighbourhood of
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this RSBF, it was found [20] that toggling the outputs at some orbits generates
an RSBF with nonlinearity 16272 having zeros in its Walsh-Hadamard spectrum,
which yields a balanced function via a linear transformation.

Let us consider the case when the number n of variables is even. Note that
bent functions are not balanced since Wf (w) = ±2

n
2 for all w ∈ Fn2 and a Boolean

function is balanced if and only if Wf (w) = 0 for w = (0, 0, . . . , 0). For even n < 8,
the maximum achievable nonlinearities for balanced Boolean functions are known,
which are 0, 4, and 26 for n = 2, 4, and 6, respectively. For even n ≥ 8, it was
conjectured [5] in 1994 that nlb(n) 6> 2n−1 − 2

n
2 + nlb(n/2), which is still open.

Specifically, the conjecture implies that there are no balanced Boolean functions
with 8 and 10 variables having nonlinearities 118 and 494, respectively.

4. Symmetric bijective S-boxes

An S-box is called rotation-symmetric if any cyclic rotation of its input variables
rotates the corresponding output variables by the same amount. In [19], it was
shown that the S-boxes obtained from power maps (or their sums) are linear equiv-
alent to rotation-symmetric S-boxes (RSSBs) (for instance the inverse function,
used as the S-box of AES, can be considered as an RSSB). The definition of RSSBs
is then generalized in [9] by defining k-rotation-symmetric S-boxes (k-RSSBs). Let
ρi be the i-cyclic shift operator defined as

ρi(x0, x1, . . . , xn−1) = (x(0+i) mod n, x(1+i) mod n, . . . , x(n−1+i) mod n),

where 1 ≤ i ≤ n. An S-box S : Fn2 → Fn2 is said to be k-rotation-symmetric if
ρk(S(x0, x1, . . . , xn−1)) = S(ρk(x0, x1, . . . , xn−1)) for all (x0, x1, . . . , xn−1) ∈ Fn2 ,
where k is a fixed divisor of n. Note that when k = 1, the corresponding class of
k-RSSBs is the same as the class of RSSBs.

Let us consider a mapping s from F2n to F2n such that (s(α))2 = s(α2) for all
α ∈ F2n . It was pointed out in [19] that the S-boxes (i.e., the mappings Fn2 → Fn2 )
obtained from s using a normal basis can be considered as RSSBs. One can then

show that the S-boxes for which (s(α))2k

= s(α2k

) in the above argument correspond
to k-RSSBs.

In [9], all possible permutations up to the linear equivalence of S-boxes that are
symmetric under those permutations are classified using the following proposition
which is an extended form of Proposition 2 for the S-boxes.

Proposition 3. Let S, T : Fn2 → Fn2 be symmetric S-boxes under permutations πs
and πt, respectively. If A,B : Fn2 → Fn2 are bijective linear mappings such that
S = A ◦ T ◦B, then πs = A ◦ πt ◦B and A = B−1.

The classification were accomplished in [9] for n = 6 by defining the equivalence
relation: πs ∼ πt if and only if there exists A such that πs = A◦πt◦A−1. The number
of equivalence classes was found to be 11 (including the identity permutation which
gives the whole space of S-boxes). After that, the steepest descent-like-iterative
search algorithm was performed in each class identifying the rich ones in terms of
high nonlinearity and low differential uniformity. More specifically, in 4 classes (out
of 11) differentially 4-uniform S-boxes with (the best known) nonlinearity 24 could
be generated; 3 of these classes correspond to k-RSSBs and the other one can be
considered as the class of S-boxes that are obtained by the concatenation of two
RSSBs in dimension 5. In [10], an exhaustive search was performed for the latter
class of functions for which the space size is 261.28. It was found [10] that there
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Table 2. Best achieved cryptographic properties [nonlinearity,
differential uniformity, algebraic degree].

#
Representative Space

Best result
Best result

permutation size (for involution S-boxes)
1 (7, 6, 2, 1, 8, 5, 4, 3) 2147.93 [84, 44, 7] [84, 44, 7]
2 (2, 3, 1, 7, 4, 5, 6, 8) 2191.48 [84, 52, 7] [84, 52, 7]
3 (6, 7, 5, 8, 4, 3, 1, 2)a 2208.29 [106,6,7] [106,6,7], [108,8,6]
4 (4, 3, 2, 5, 8, 1, 7, 6) 2227.35 [0,−,−] [0,−,−]
5 (4, 5, 3, 2, 8, 1, 6, 7) 2243.74 [106,6,7] [106,6,7]
6 (8, 3, 4, 6, 7, 1, 5, 2) 2277.78 [104, 6, 7] [104, 6, 7], [106,8,7]
7 (8, 6, 3, 5, 2, 1, 7, 4) 2283.02 [104, 10, 7] [104 , 8 , 7 ]
8 (4, 6, 7, 5, 1, 2, 3, 8) 2357.97 [84, 44, 7] [84, 44, 7]
9 (2, 6, 3, 4, 5, 8, 1, 7) 2358.65 [100, 10, 7] [100, 10, 7], [104 , 20 , 7 ]
10 (7, 3, 6, 1, 8, 2, 4, 5) 2359.22 [0,−,−] [0,−,−]
11 (7, 6, 1, 2, 3, 8, 5, 4)b 2412.21 [104, 6, 7] [104, 6, 7], [106,8,7]
12 (2, 7, 4, 3, 5, 6, 1, 8) 2431.91 [0,−,−] [0,−,−]
13 (6, 4, 8, 2, 1, 7, 5, 3) 2440.19 [84, 22, 7] [84, 22, 7]
14 (1, 3, 6, 7, 2, 5, 4, 8) 2446.24 [84, 22, 7] [84, 22, 7]
15 (1, 5, 6, 4, 3, 2, 7, 8) 2476.86 [84, 52, 7] [84, 52, 7]
16 (4, 3, 8, 5, 1, 6, 7, 2) 2565.87 [104, 6, 7] [104, 6, 7]
17 (1, 6, 3, 4, 2, 5, 7, 8) 2693.43 [84, 44, 7] [84, 44, 7]
18 (7, 6, 5, 8, 3, 2, 1, 4)c 2824.73 [104, 6, 7] [104, 6, 7]
19 (1, 5, 8, 4, 2, 7, 6, 3) 2835.24 [104, 8, 7] [104, 8, 7]
20 (1, 2, 7, 4, 5, 8, 3, 6) 2890.27 [84, 22, 7] [84, 22, 7]
21 (8, 2, 3, 4, 5, 6, 7, 1) 21076.16 [0,−,−] [0,−,−]
22 (1, 2, 3, 4, 5, 6, 7, 8)d 21684 [102, 6, 7] [104 , 6 , 7 ]
a : Linear equivalet to RSSBs
b : Linear equivalent to 2-RSSBs
c : Linear equivalent to 4-RSSBs
d : The search space of all bijective S-boxes

exist 237.56 S-boxes with nonlinearity 24, among which the number of those with
differential uniformity 4 is 233.99. Another exhaustive search was carried out in [9]
for the class of RSSBs (in dimension 6) whose space size is 247.9. In this case,
the number of RSSBs with nonlinearity 24 is found to be 228 and the number of
differentially 4-uniform RSSBs with nonlinearity 24 is computed as 224.7. It seems
both classes are rich in terms of high nonlinearity and low differential uniformity
and the class of RSSBs is more dense than the other class with respect to those
cryptographic properties.

Here we classify all 8! permutations using Proposition 3 for the S-boxes in di-
mension 8, and found that there are 22 classes as shown in Table 2. For each class,
we have performed the steepest-descent-like iterative search algorithm; the same
algorithm is also applied for the corresponding subclasses each consisting of the
involution S-boxes. The best obtained results are given in the last two columns of
Table 2. As can be seen from Table 2, the nonlinearities of symmetric S-boxes be-
longing to 4 (out of 22) classes are found to be 0. This happens because we find that
a certain component function is always linear for each of these classes. We recall
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134 Selçuk Kavut and Seher Tutdere

that a similar situation occurs also in [9] for the symmeric S-boxes in dimension 6.
More specifically, in our case, for the classes given by the 4th, 10th, 12th, and 21st
permutations, we find that the coefficient vectors of the linear component functions
are (0, 1, 0, 1, 1, 1, 1, 1), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 1, 1, 1, 1), and (1, 0, 0, 0, 0, 0,
0, 0), respectively.

From Table 2, we see that in most cases the cryptographic properties obtained
from symmetric S-boxes are the same as those obtained from their subclasses of
involution S-boxes. There are only 5 subclasses in Table 2 for which we get some
better results indicated by italic font. The results with nonlinearities ≥ 106 are
denoted by bold font (obtained for the classes corresponding to the 3rd, 5th, 6th,
and 11th permutations). Note that the S-boxes which are symmetric under the 3rd
and 11th permutations are linear equivalent to RSSBs and 2-RSSBs, respectively.
We point out that although the inverse function is within the class of RSSBs, we
couldn’t get that function by our search, and its profile [112, 4, 7] is superior than
our results in Table 2. One can also find that the S-boxes which are symmetric
under the 5th permutation are linear equivalent to the class of S-boxes which are
obtained by concatenating two RSSBs in dimension 7. A more systematic search
was performed in [10] for this class by exploiting some combinatorial properties
related to the concatenation method.

The S-box with profile [108, 8, 6], given below, achieves the highest nonlinearity
in Table 2 and it is obtained within the subclass of involution S-boxes which are
symmetric under the 3rd permutation.

(0, 66, 132, 23, 9, 212, 46, 209, 18, 4, 169, 148, 92, 105, 163, 101, 36, 204, 8, 190, 83, 91,

41, 3, 184, 27, 210, 25, 71, 112, 202, 103, 72, 128, 153, 99, 16, 194, 125, 188, 166, 22, 182,

120, 82, 161, 6, 201, 113, 235, 54, 68, 165, 65, 50, 243, 142, 229, 224, 248, 149, 123, 206,

115, 144, 53, 1, 90, 51, 214, 198, 28, 32, 176, 133, 104, 250, 80, 121, 222, 77, 181, 44, 20,

109, 170, 240, 251, 164, 195, 67, 21, 12, 239, 147, 137, 226, 146, 215, 35, 108, 15, 136, 31,

75, 13, 130, 162, 100, 84, 231, 167, 29, 48, 203, 63, 193, 191, 241, 119, 43, 78, 246, 61, 157,

38, 230, 234, 33, 139, 106, 232, 2, 74, 180, 178, 102, 95, 173, 129, 141, 140, 56, 179, 64,

177, 97, 94, 11, 60, 208, 228, 245, 34, 160, 249, 242, 124, 189, 185, 154, 45, 107, 14, 88, 52,

40, 111, 218, 10, 85, 253, 225, 138, 247, 196, 73, 145, 135, 143, 134, 81, 42, 211, 24, 159,

223, 187, 39, 158, 19, 117, 197, 116, 37, 89, 175, 192, 70, 217, 216, 47, 30, 114, 17, 252, 62,

220, 150, 7, 26, 183, 5, 254, 69, 98, 200, 199, 168, 233, 207, 221, 79, 186, 58, 172, 96, 236,

151, 57, 126, 110, 131, 219, 127, 49, 227, 244, 238, 93, 86, 118, 156, 55, 237, 152, 122, 174,

59, 155, 76, 87, 205, 171, 213, 255).

It took a month to obtain our results in Table 2 by using all 6 cores of a work-
station with Intel Xeon CPU E5-1650v3 (15M Cache, 3.50 GHz) and 16 GB RAM
under Windows 7 Professional 64-bit operating system.

5. Conclusion

It seems designing rich subspaces of cryptographic primitives and use of efficient
(exhaustive or heuristic) search techniques are important tools to attack some of
the most challenging problems in symmetric cryptography. We think that such
tools, when combined with theory, provide many important results, some of which
are mentioned here. On the other hand, symmetric (vectorial) Boolean functions
are interesting to look into, as they can be used for efficient implementation of a
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cryptosystem and there are a plenty of functions with outstanding cryptographic
properties, which can be considered as symmetric under some permutations.
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