

ACTA UNIV. SAPIENTIAE, MATHEMATICA, 13, 2 (2021) 427-441

DOI: 10.2478/ausm-2021-0026

A new solution to the Rhoades' open problem with an application

Nihal Özgür

Balıkesir University, Department of Mathematics, 10145 Balıkesir, TURKEY email: nihal@balikesir.edu.tr Nihal Taş

Balıkesir University, Department of Mathematics, 10145 Balıkesir, TURKEY email: nihaltas@balikesir.edu.tr

Abstract. We give a new solution to the Rhoades' open problem on the discontinuity at fixed point via the notion of an S-metric. To do this, we develop a new technique by means of the notion of a Zamfirescu mapping. Also, we consider a recent problem called the "fixed-circle problem" and propose a new solution to this problem as an application of our technique.

1 Introduction and preliminaries

Fixed-point theory has been extensively studied by various aspects. One of these is the discontinuity problem at fixed points (see [1, 2, 3, 4, 5, 6, 24, 25, 26, 27] for some examples). Discontinuous functions have been widely appeared in many areas of science such as neural networks (for example, see [7, 12, 13, 14]). In this paper, we give a new solution to the Rhoades' open problem (see [28] for more details) on the discontinuity at fixed point in the setting of an S-metric space which is a recently introduced generalization of a metric space. S-metric spaces were introduced in [29] by Sedgi et al., as follows:

Definition 1 [29] Let X be a nonempty set and $S : X \times X \times X \to [0, \infty)$ a function satisfying the following conditions for all $x, y, z, a \in X$:

2010 Mathematics Subject Classification: Primary 54H25; Secondary 47H09, 47H10 **Key words and phrases:** discontinuity, fixed point, S-metric, fixed-circle problem

S1) S(x, y, z) = 0 if and only if x = y = z,

S2) $S(x,y,z) \leq S(x,x,a) + S(y,y,a) + S(z,z,a).$

Then S is called an S-metric on X and the pair (X, S) is called an S-metric space.

Relationships between a metric and an S-metric were given as follows:

Lemma 1 [9] Let (X, d) be a metric space. Then the following properties are satisfied:

- 1. $S_d(x, y, z) = d(x, z) + d(y, z)$ for all $x, y, z \in X$ is an S-metric on X.
- 2. $x_n \to x$ in (X,d) if and only if $x_n \to x$ in $(X,\mathcal{S}_d).$
- 3. $\{x_n\}$ is Cauchy in (X, d) if and only if $\{x_n\}$ is Cauchy in (X, S_d) .
- 4. (X, d) is complete if and only if (X, S_d) is complete.

The metric S_d was called as the S-metric generated by d [17]. Some examples of an S-metric which is not generated by any metric are known (see [9, 17] for more details).

Furthermore, Gupta claimed that every S-metric on X defines a metric d_S on X as follows:

$$d_{S}(x,y) = \mathcal{S}(x,x,y) + \mathcal{S}(y,y,x), \qquad (1)$$

for all $x, y \in X$ [8]. However, since the triangle inequality does not satisfied for all elements of X everywhen, the function $d_S(x, y)$ defined in (1) does not always define a metric (see [17]).

In the following, we see an example of an S-metric which is not generated by any metric.

Example 1 [17] Let $X = \mathbb{R}$ and the function $S : X \times X \times X \to [0, \infty)$ be defined as

$$S(x, y, z) = |x - z| + |x + z - 2y|,$$

for all $x, y, z \in \mathbb{R}$. Then S is an S-metric which is not generated by any metric and the pair (X, S) is an S-metric space.

The following lemma will be used in the next sections.

Lemma 2 [29] Let (X, S) be an S-metric space. Then we have

$$\mathcal{S}(\mathbf{x},\mathbf{x},\mathbf{y}) = \mathcal{S}(\mathbf{y},\mathbf{y},\mathbf{x}).$$

In this paper, our aim is to obtain a new solution to the Rhoades' open problem on the existence of a contractive condition which is strong enough to generate a fixed point but which does not force the map to be continuous at the fixed point. To do this, we inspire of a result of Zamfirescu given in [33].

On the other hand, a recent aspect to the fixed point theory is to consider geometric properties of the set Fix(T), the fixed point set of the self-mapping T. Fixed-circle problem (resp. fixed-disc problem) have been studied in this context (see [6, 18, 19, 20, 21, 22, 23, 26, 27, 30, 31]). As an application, we present a new solution to these problems. We give necessary examples to support our theoretical results.

2 Main results

From now on, we assume that (X, S) is an S-metric space and $T : X \to X$ is a self-mapping. In this section, we use the numbers defined as

$$M_{z}(x,y) = \max\left\{ad(x,y), \frac{b}{2}[d(x,Tx) + d(y,Ty)], \frac{c}{2}[d(x,Ty) + d(y,Tx)]\right\}$$

and

$$M_{z}^{S}(\mathbf{x},\mathbf{y}) = \max \left\{ \begin{array}{c} a\mathcal{S}\left(\mathbf{x},\mathbf{x},\mathbf{y}\right), \frac{b}{2}\left[\mathcal{S}\left(\mathbf{x},\mathbf{x},\mathsf{T}\mathbf{x}\right) + \mathcal{S}\left(\mathbf{y},\mathbf{y},\mathsf{T}\mathbf{y}\right)\right], \\ \frac{c}{2}\left[\mathcal{S}\left(\mathbf{x},\mathbf{x},\mathsf{T}\mathbf{y}\right) + \mathcal{S}\left(\mathbf{y},\mathbf{y},\mathsf{T}\mathbf{x}\right)\right] \end{array} \right\},$$

where $a, b \in [0, 1)$ and $c \in [0, \frac{1}{2}]$.

We give the following theorem as a new solution to the Rhoades' open problem.

Theorem 1 Let (X, S) be a complete S-metric space and T a self-mapping on X satisfying the conditions

i) There exists a function $\varphi:\mathbb{R}^+\to\mathbb{R}^+$ such that $\varphi(t)< t$ for each t>0 and

$$\mathcal{S}(\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{y}) \leq \phi\left(\mathsf{M}_{z}^{\mathsf{S}}(\mathsf{x},\mathsf{y})\right),$$

for all $x, y \in X$,

ii) There exists a $\delta = \delta(\varepsilon) > 0$ such that $\varepsilon < M_z^S(x, y) < \varepsilon + \delta$ implies $S(Tx, Tx, Ty) \le \varepsilon$ for a given $\varepsilon > 0$.

Then T has a unique fixed point $u \in X$. Also, T is discontinuous at u if and only if $\lim_{x\to u} M_z^S(x, u) \neq 0$.

Proof. At first, we define the number

$$\xi = \max\left\{a, \frac{2}{2-b}, \frac{c}{2-2c}\right\}.$$

Clearly, we have $\xi < 1$.

By the condition (i), there exists a function $\varphi:\mathbb{R}^+\to\mathbb{R}^+$ such that $\varphi(t)< t$ for each t>0 and

$$\mathcal{S}(\mathsf{Tx},\mathsf{Tx},\mathsf{Ty}) \leq \varphi\left(\mathsf{M}_{\mathsf{z}}^{\mathsf{S}}(\mathsf{x},\mathsf{y})\right)$$

for all $x, y \in X$. Using the properties of ϕ , we obtain

$$\mathcal{S}(\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{y}) < \mathsf{M}_{z}^{\mathsf{S}}(\mathsf{x},\mathsf{y}), \qquad (2)$$

whenever $M_{z}^{S}\left(x,y\right) > 0$.

Let us consider any $x_0 \in X$ with $x_0 \neq Tx_0$ and define a sequence $\{x_n\}$ as $x_{n+1} = Tx_n = T^n x_0$ for all n = 0, 1, 2, 3, ... Using the condition (i) and the inequality (2), we get

$$\begin{split} \mathcal{S}\left(x_{n}, x_{n}, x_{n+1}\right) &= \mathcal{S}\left(\mathsf{T}x_{n-1}, \mathsf{T}x_{n-1}, \mathsf{T}x_{n}\right) \leq \varphi\left(\mathsf{M}_{z}^{S}\left(x_{n-1}, x_{n}\right)\right) & (3) \\ &< \mathsf{M}_{z}^{S}\left(x_{n-1}, x_{n}\right) \\ &= \max\left\{\begin{array}{c} a\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n-1}, x_{n}\right), \\ \frac{b}{2}\left[\mathcal{S}\left(x_{n-1}, x_{n-1}, \mathsf{T}x_{n-1}\right) + \mathcal{S}\left(x_{n}, x_{n}, \mathsf{T}x_{n}\right)\right], \\ \frac{c}{2}\left[\mathcal{S}\left(x_{n-1}, x_{n-1}, \mathsf{T}x_{n}\right) + \mathcal{S}\left(x_{n}, x_{n}, \mathsf{T}x_{n-1}\right)\right]\right\} \\ &= \max\left\{\begin{array}{c} a\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right), \\ \frac{b}{2}\left[\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right) + \mathcal{S}\left(x_{n}, x_{n}, x_{n+1}\right)\right], \\ \frac{c}{2}\left[\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n+1}\right) + \mathcal{S}\left(x_{n}, x_{n}, x_{n}\right)\right]\right\} \\ &= \max\left\{\begin{array}{c} a\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right) + \mathcal{S}\left(x_{n}, x_{n}, x_{n+1}\right)\right], \\ \frac{b}{2}\left[\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right) + \mathcal{S}\left(x_{n}, x_{n}, x_{n+1}\right)\right], \\ \frac{c}{2}\mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n+1}\right)\right\}. \end{split}\right\}. \end{split}$$

Assume that $M_z^S(x_{n-1}, x_n) = a S(x_{n-1}, x_{n-1}, x_n)$. Then using the inequality (3), we have

$$S(x_{n}, x_{n}, x_{n+1}) < aS(x_{n-1}, x_{n-1}, x_{n}) \le \xi S(x_{n-1}, x_{n-1}, x_{n}) < S(x_{n-1}, x_{n-1}, x_{n})$$

and so

$$\mathcal{S}\left(\mathbf{x}_{n}, \mathbf{x}_{n}, \mathbf{x}_{n+1}\right) < \mathcal{S}\left(\mathbf{x}_{n-1}, \mathbf{x}_{n-1}, \mathbf{x}_{n}\right). \tag{4}$$

Let $M_z^S(x_{n-1},x_n) = \frac{b}{2} \left[\mathcal{S}(x_{n-1},x_{n-1},x_n) + \mathcal{S}(x_n,x_n,x_{n+1}) \right]$. Again using the inequality (3), we get

$$S(x_{n}, x_{n}, x_{n+1}) < \frac{b}{2} \left[S(x_{n-1}, x_{n-1}, x_{n}) + S(x_{n}, x_{n}, x_{n+1}) \right],$$

which implies

$$\left(1-\frac{b}{2}\right)\mathcal{S}\left(x_{n},x_{n},x_{n+1}\right) < \frac{b}{2}\mathcal{S}\left(x_{n-1},x_{n-1},x_{n}\right)$$

and hence

$$\mathcal{S}\left(x_{n}, x_{n}, x_{n+1}\right) < \frac{b}{2-b} \mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right) \leq \xi \mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right).$$

This yields

$$\mathcal{S}\left(x_{n}, x_{n}, x_{n+1}\right) < \mathcal{S}\left(x_{n-1}, x_{n-1}, x_{n}\right).$$
(5)

Suppose that $M_z^S(x_{n-1}, x_n) = \frac{c}{2} \mathcal{S}(x_{n-1}, x_{n-1}, x_{n+1})$. Then using the inequality (3), Lemma 2 and the condition (S2), we obtain

$$\begin{split} \mathcal{S} \left(x_{n}, x_{n}, x_{n+1} \right) &< \frac{c}{2} \mathcal{S} \left(x_{n-1}, x_{n-1}, x_{n+1} \right) = \frac{c}{2} \mathcal{S} \left(x_{n+1}, x_{n+1}, x_{n-1} \right) \\ &\leq \frac{c}{2} \left[\mathcal{S} \left(x_{n-1}, x_{n-1}, x_{n} \right) + 2 \mathcal{S} \left(x_{n+1}, x_{n+1}, x_{n} \right) \right] \\ &= \frac{c}{2} \mathcal{S} \left(x_{n-1}, x_{n-1}, x_{n} \right) + c \mathcal{S} \left(x_{n+1}, x_{n+1}, x_{n} \right) \\ &= \frac{c}{2} \mathcal{S} \left(x_{n-1}, x_{n-1}, x_{n} \right) + c \mathcal{S} \left(x_{n}, x_{n}, x_{n+1} \right), \end{split}$$

which implies

$$(1-c) \mathcal{S}(x_n, x_n, x_{n+1}) < \frac{c}{2} \mathcal{S}(x_{n-1}, x_{n-1}, x_n).$$

Considering this, we find

$$S(x_{n}, x_{n}, x_{n+1}) < \frac{c}{2(1-c)}S(x_{n-1}, x_{n-1}, x_{n}) \le \xi S(x_{n-1}, x_{n-1}, x_{n})$$

and so

$$\mathcal{S}\left(\mathbf{x}_{n}, \mathbf{x}_{n}, \mathbf{x}_{n+1}\right) < \mathcal{S}\left(\mathbf{x}_{n-1}, \mathbf{x}_{n-1}, \mathbf{x}_{n}\right).$$
(6)

If we set $\alpha_n = S(x_n, x_n, x_{n+1})$, then by the inequalities (4), (5) and (6), we find

$$\alpha_n < \alpha_{n-1}, \tag{7}$$

that is, α_n is a strictly decreasing sequence of positive real numbers whence the sequence α_n tends to a limit $\alpha \ge 0$.

Assume that $\alpha>0.$ There exists a positive integer $k\in\mathbb{N}$ such that $n\geq k$ implies

$$\alpha < \alpha_n < \alpha + \delta(\alpha). \tag{8}$$

Using the condition (ii) and the inequality (7), we get

$$\mathcal{S}\left(\mathsf{T}x_{n-1},\mathsf{T}x_{n-1},\mathsf{T}x_{n}\right) = \mathcal{S}\left(x_{n},x_{n},x_{n+1}\right) = \alpha_{n} < \alpha, \tag{9}$$

for $n \ge k$. Then the inequality (9) contradicts to the inequality (8). Therefore, it should be $\alpha = 0$.

Now we prove that $\{x_n\}$ is a Cauchy sequence. Let us fix an $\varepsilon > 0$. Without loss of generality, we suppose that $\delta(\varepsilon) < \varepsilon$. There exists $k \in \mathbb{N}$ such that

$$\mathcal{S}(\mathbf{x}_{n},\mathbf{x}_{n},\mathbf{x}_{n+1}) = \alpha_{n} < \frac{\delta}{4},$$

for $n \ge k$ since $\alpha_n \to 0$. Using the mathematical induction and the Jachymski's technique (see [10, 11] for more details), we show

$$S(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k+n}) < \varepsilon + \frac{\delta}{2},$$
 (10)

for any $n \in \mathbb{N}$. At first, the inequality (10) holds for n = 1 since

$$\mathcal{S}(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k+1}) = \alpha_k < \frac{\delta}{4} < \varepsilon + \frac{\delta}{2}.$$

Assume that the inequality (10) holds for some n. We show that the inequality (10) holds for n + 1. By the condition (S2), we get

$$S(x_k, x_k, x_{k+n+1}) \le 2S(x_k, x_k, x_{k+1}) + S(x_{k+n+1}, x_{k+n+1}, x_{k+1}).$$

From Lemma 2, we have

$$S(x_{k+n+1}, x_{k+n+1}, x_{k+1}) = S(x_{k+1}, x_{k+1}, x_{k+n+1})$$

and so it suffices to prove

$$\mathcal{S}\left(\mathbf{x}_{k+1}, \mathbf{x}_{k+1}, \mathbf{x}_{k+n+1}\right) \leq \varepsilon$$

To do this, we show

$$M_z^{S}(x_k, x_{k+n}) \leq \varepsilon + \delta$$

Then we find

$$\begin{split} & a\mathcal{S}(x_{k}, x_{k}, x_{k+n}) < \mathcal{S}(x_{k}, x_{k}, x_{k+n}) < \varepsilon + \frac{\delta}{2}, \\ & \frac{b}{2} \left[\mathcal{S}(x_{k}, x_{k}, x_{k+1}) + \mathcal{S}(x_{k+n}, x_{k+n}, x_{k+n+1}) \right] \\ < \mathcal{S}(x_{k}, x_{k}, x_{k+1}) + \mathcal{S}(x_{k+n}, x_{k+n}, x_{k+n+1}) \\ < \frac{\delta}{4} + \frac{\delta}{4} = \frac{\delta}{2} \end{split}$$

and

$$\frac{c}{2} \left[S(x_{k}, x_{k}, x_{k+n+1}) + S(x_{k+n}, x_{k+n}, x_{k+1}) \right] \\
\leq \frac{c}{2} \left[4S(x_{k}, x_{k}, x_{k+1}) + S(x_{k+1}, x_{k+1}, x_{k+1+n}) + S(x_{k}, x_{k}, x_{k+n}) \right] \\
= c \left[2S(x_{k}, x_{k}, x_{k+1}) + \frac{S(x_{k+1}, x_{k+1}, x_{k+1+n})}{2} + \frac{S(x_{k}, x_{k}, x_{k+n})}{2} \right] \qquad (11) \\
< c \left[\frac{\delta}{2} + \varepsilon + \frac{\delta}{2} \right] < \varepsilon + \delta.$$

Using the definition of $M_z^S(x_k, x_{k+n})$, the condition (ii) and the inequalities (10) and (11), we obtain

$$M_z^S(x_k, x_{k+n}) \leq \varepsilon + \delta$$

and so

$$\mathcal{S}(\mathbf{x}_{k+1},\mathbf{x}_{k+1},\mathbf{x}_{k+n+1}) \leq \varepsilon.$$

Hence we get

$$\mathcal{S}(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k+n+1}) < \varepsilon + \frac{\delta}{2},$$

whence $\{x_n\}$ is Cauchy. From the completeness hypothesis, there exists a point $u \in X$ such that $x_n \to u$ for $n \to \infty$. Also we get

$$\lim_{n\to\infty}Tx_n=\lim_{n\to\infty}x_{n+1}=u.$$

Now we prove that u is a fixed point of T. On the contrary, assume that u is not a fixed point of T. Then using the condition (i) and the property of ϕ , we obtain

$$\mathcal{S}(\mathsf{Tu},\mathsf{Tu},\mathsf{Tx}_n) \leq \phi(\mathsf{M}_z^{\mathsf{S}}(\mathsf{u},\mathsf{x}_n)) < \mathsf{M}_z^{\mathsf{S}}(\mathsf{u},\mathsf{x}_n)$$

$$= \max \left\{ \begin{array}{cc} a\mathcal{S}(u,u,x_n), \frac{b}{2} \left[\mathcal{S}(u,u,\mathsf{T}u) + \mathcal{S}(x_n,x_n,\mathsf{T}x_n) \right], \\ \frac{c}{2} \left[\mathcal{S}(u,u,\mathsf{T}x_n) + \mathcal{S}(x_n,x_n,\mathsf{T}u) \right] \end{array} \right\}.$$

Using Lemma 2 and taking limit for $n \to \infty$, we find

$$\mathcal{S}(\mathsf{Tu},\mathsf{Tu},\mathfrak{u}) < \max\left\{\frac{b}{2}\mathcal{S}(\mathfrak{u},\mathfrak{u},\mathsf{Tu}),\frac{c}{2}\mathcal{S}(\mathfrak{u},\mathfrak{u},\mathsf{Tu})
ight\} < \mathcal{S}(\mathsf{Tu},\mathsf{Tu},\mathfrak{u}),$$

a contradiction. It should be Tu = u. We show that u is the unique fixed point of T. Let v be another fixed point of T such that $u \neq v$. From the condition (i) and Lemma 2, we have

$$\begin{split} \mathcal{S}(\mathsf{Tu},\mathsf{Tu},\mathsf{Tv}) &= \mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{v}) \leq \varphi(\mathsf{M}_z^{\mathsf{S}}(\mathsf{u},\mathsf{v})) < \mathsf{M}_z^{\mathsf{S}}(\mathsf{u},\mathsf{v}) \\ &= \max \left\{ \begin{array}{c} a\mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{v}), \frac{\mathsf{b}}{2} \left[\mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{Tu}) + \mathcal{S}(\mathsf{v},\mathsf{v},\mathsf{Tv}) \right], \\ & \frac{\mathsf{c}}{2} \left[\mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{Tv}) + \mathcal{S}(\mathsf{v},\mathsf{v},\mathsf{Tu}) \right] \\ &= \max \left\{ a\mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{v}), c\mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{v}) \right\} < \mathcal{S}(\mathsf{u},\mathsf{u},\mathsf{v}), \end{split}$$

a contradiction. So it should be u = v. Therefore, T has a unique fixed point $u \in X$.

Finally, we prove that T is discontinuous at u if and only if $\lim_{x\to u} M_z^S(x,u) \neq 0$. To do this, we can easily show that T is continuous at u if and only if $\lim_{x\to u} M_z^S(x,u) = 0$. Suppose that T is continuous at the fixed point u and $x_n \to u$. Hence we get $Tx_n \to Tu = u$ and using the condition (S2), we find

$$\mathcal{S}(\mathbf{x}_n, \mathbf{x}_n, \mathsf{T}\mathbf{x}_n) \leq 2\mathcal{S}(\mathbf{x}_n, \mathbf{x}_n, \mathbf{u}) + \mathcal{S}(\mathsf{T}\mathbf{x}_n, \mathsf{T}\mathbf{x}_n, \mathbf{u}) \rightarrow \mathbf{0},$$

as $x_n \to u$. So we get $\lim_{x_n \to u} M_z^S(x_n, u) = 0$. On the other hand, assume $\lim_{x_n \to u} M_z^S(x_n, u) = 0$. Then we obtain $S(x_n, x_n, Tx_n) \to 0$ as $x_n \to u$, which implies $Tx_n \to Tu = u$. Consequently, T is continuous at u.

We give an example.

Example 2 Let $X = \{0, 2, 4, 8\}$ and (X, S) be the S-metric space defined as in *Example 1.* Let us define the self-mapping $T : X \to X$ as

$$Tx = \begin{cases} 4 ; x \le 4 \\ 2 ; x > 4 \end{cases}$$

for all $x \in \{0, 2, 4, 8\}$. Then T satisfies the conditions of Theorem 1 with $a = \frac{3}{4}, b = c = 0$ and has a unique fixed point x = 4. Indeed, we get the following table :

$$\begin{array}{lll} \mathcal{S}\left(\text{Tx},\text{Tx},\text{Ty}\right) = 0 & \textit{and} & 3 \leq M_z^S\left(x,y\right) \leq 6 \textit{ when } x,y \leq 4 \\ \mathcal{S}\left(\text{Tx},\text{Tx},\text{Ty}\right) = 4 & \textit{and} & 6 \leq M_z^S\left(x,y\right) \leq 12 \textit{ when } x \leq 4,y > 4 \\ \mathcal{S}\left(\text{Tx},\text{Tx},\text{Ty}\right) = 4 & \textit{and} & 6 \leq M_z^S\left(x,y\right) \leq 12 \textit{ when } x > 4,y \leq 4 \end{array}$$

Hence T satisfies the conditions of Theorem 1 with

$$\varphi(t) = \begin{cases} 5 & ; t \ge 6\\ \frac{t}{2} & ; t < 6 \end{cases}$$

and

$$\delta(\varepsilon) = \begin{cases} 6 & ; \quad \varepsilon \ge 3 \\ 6 - \varepsilon & ; \quad \varepsilon < 3 \end{cases}$$

Now we give the following results as the consequences of Theorem 1.

Corollary 1 Let (X, S) be a complete S-metric space and T a self-mapping on X satisfying the conditions

i) $\mathcal{S}(\mathsf{Tx},\mathsf{Tx},\mathsf{Ty}) < \mathsf{M}_z^{\mathsf{S}}(\mathsf{x},\mathsf{y})$ for any $\mathsf{x},\mathsf{y} \in \mathsf{X}$ with $\mathsf{M}_z^{\mathsf{S}}(\mathsf{x},\mathsf{y}) > 0$,

ii) There exists a $\delta = \delta(\varepsilon) > 0$ such that $\varepsilon < M_z^{S}(x, y) < \varepsilon + \delta$ implies $S(Tx, Tx, Ty) \le \varepsilon$ for a given $\varepsilon > 0$.

Then T has a unique fixed point $u \in X$. Also, T is discontinuous at u if and only if $\lim_{x \to u} M_z^S(x, u) \neq 0$.

Corollary 2 Let (X, S) be a complete S-metric space and T a self-mapping on X satisfying the conditions

i) There exists a function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\varphi(\mathcal{S}(x, x, y)) < \mathcal{S}(x, x, y)$ and $\mathcal{S}(Tx, Tx, Ty) \leq \varphi(\mathcal{S}(x, x, y))$,

ii) There exists a $\delta = \delta(\varepsilon) > 0$ such that $\varepsilon < t < \varepsilon + \delta$ implies $\varphi(t) \le \varepsilon$ for any t > 0 and a given $\varepsilon > 0$.

Then T has a unique fixed point $u \in X$.

The following theorem shows that the power contraction of the type $M_z^S(x, y)$ allows also the possibility of discontinuity at the fixed point.

Theorem 2 Let (X, S) be a complete S-metric space and T a self-mapping on X satisfying the conditions

i) There exists a function $\varphi:\mathbb{R}^+\to\mathbb{R}^+$ such that $\varphi(t)< t$ for each t>0 and

$$\mathcal{S}(\mathsf{T}^{\mathsf{m}}\mathsf{x},\mathsf{T}^{\mathsf{m}}\mathsf{x},\mathsf{T}^{\mathsf{m}}\mathsf{y}) \leq \varphi\left(\mathsf{M}_{z}^{\mathsf{S}^{*}}(\mathsf{x},\mathsf{y})\right),$$

where

$$M_{z}^{S^{*}}(x,y) = \max \left\{ \begin{array}{c} a\mathcal{S}\left(x,x,y\right), \frac{b}{2}\left[\mathcal{S}\left(x,x,\mathsf{T}^{\mathsf{m}}x\right) + \mathcal{S}\left(y,y,\mathsf{T}^{\mathsf{m}}y\right)\right], \\ \frac{c}{2}\left[\mathcal{S}\left(x,x,\mathsf{T}^{\mathsf{m}}y\right) + \mathcal{S}\left(y,y,\mathsf{T}^{\mathsf{m}}x\right)\right] \end{array} \right\}$$

for all $x, y \in X$,

ii) There exists a $\delta = \delta(\varepsilon) > 0$ such that $\varepsilon < M_z^{S^*}(x,y) < \varepsilon + \delta$ implies $\mathcal{S}(T^mx, T^mx, T^my) \le \varepsilon$ for a given $\varepsilon > 0$.

Then T has a unique fixed point $u \in X$. Also, T is discontinuous at u if and only if $\lim_{x \to u} M_z^{S^*}(x, u) \neq 0$.

Proof. By Theorem 1, the function $\mathsf{T}^{\mathfrak{m}}$ has a unique fixed point $\mathfrak{u}.$ Hence we have

$$Tu = TT^m u = T^m Tu$$

and so Tu is another fixed point of T^m . From the uniqueness of the fixed point, we obtain Tu = u, that is, T has a unique fixed point u.

We note that if the S-metric S generates a metric d then we consider Theorem 1 on the corresponding metric space as follows:

Theorem 3 Let (X, d) be a complete metric space and T a self-mapping on X satisfying the conditions

i) There exists a function $\varphi:\mathbb{R}^+\to\mathbb{R}^+$ such that $\varphi(t)< t$ for each t>0 and

$$d(\mathsf{T} \mathsf{x}, \mathsf{T} \mathsf{y}) \leq \phi \left(\mathsf{M}_{z} \left(\mathsf{x}, \mathsf{y} \right) \right),$$

for all $x, y \in X$,

ii) There exists a $\delta = \delta(\epsilon) > 0$ such that $\epsilon < M_z(x,y) < \epsilon + \delta$ implies $d(Tx,Ty) \le \epsilon$ for a given $\epsilon > 0$.

Then T has a unique fixed point $u \in X$. Also, T is discontinuous at u if and only if $\lim_{x\to u} M_z(x, u) \neq 0$.

Proof. By the similar arguments used in the proof of Theorem 1, the proof can be easily obtained. \Box

3 An application to the fixed-circle problem

In this section, we investigate new solutions to the fixed-circle problem raised by Özgür and Taş in [19] related to the geometric properties of the set Fix(T)for a self mapping T on an S-metric space (X, S). Some fixed-circle or fixeddisc results, as the direct solutions of this problem, have been studied using various methods on a metric space or some generalized metric spaces (see [15, 16, 20, 21, 22, 23, 26, 27, 30, 31, 32]).

Now we recall the notions of a circle and a disc on an S-metric space as follows:

$$C_{x_0,r}^S = \{x \in X : \mathcal{S}(x, x, x_0) = r\}$$

and

$$\mathsf{D}^{\mathsf{S}}_{\mathsf{x}_0,\mathsf{r}} = \{ \mathsf{x} \in \mathsf{X} : \mathcal{S}(\mathsf{x},\mathsf{x},\mathsf{x}_0) \le \mathsf{r} \},\$$

where $r \in [0, \infty)$ [20, 29].

If Tx = x for all $x \in C_{x_0,r}^S$ (resp. $x \in D_{x_0,r}^S$) then the circle $C_{x_0,r}^S$ (resp. the disc $D_{x_0,r}^S$) is called as the fixed circle (resp. fixed disc) of T (for more details see [15, 20]).

We begin with the following definition.

Definition 2 A self-mapping T is called an S-Zamfirescu type x_0 -mapping if there exist $x_0 \in X$ and $a, b \in [0, 1)$ such that

$$\mathcal{S}(\mathsf{T} x,\mathsf{T} x,x) > 0 \Longrightarrow \mathcal{S}(\mathsf{T} x,\mathsf{T} x,x) \le \max \left\{ \begin{array}{c} a \mathcal{S}(x,x,x_0), \\ \frac{b}{2} \left[\mathcal{S}(\mathsf{T} x_0,\mathsf{T} x_0,x) + \mathcal{S}(\mathsf{T} x,\mathsf{T} x,x_0) \right] \end{array} \right\},$$

for all $x \in X$.

We define the following number:

$$\rho := \inf \left\{ \mathcal{S}(\mathsf{T} \mathsf{x}, \mathsf{T} \mathsf{x}, \mathsf{x}) : \mathsf{T} \mathsf{x} \neq \mathsf{x}, \mathsf{x} \in \mathsf{X} \right\}.$$
(12)

Now we prove that the set Fix(T) contains a circle (resp. a disc) by means of the number ρ .

Theorem 4 If T is an S-Zamfirescu type x_0 -mapping with $x_0 \in X$ and the condition

 $\mathcal{S}(\mathsf{T}x,\mathsf{T}x,\mathsf{x}_0) \leq \rho$

holds for each $x \in C^{S}_{x_{0},\rho}$ then $C^{S}_{x_{0},\rho}$ is a fixed circle of T, that is, $C^{S}_{x_{0},\rho} \subset Fix(T)$.

Proof. At first, we show that x_0 is a fixed point of T. On the contrary, let $Tx_0 \neq x_0$. Then we have $S(Tx_0, Tx_0, x_0) > 0$. By the definition of an S-Zamfirescu type x_0 -mapping and the condition (S1), we obtain

$$\begin{split} \mathcal{S}(\mathsf{T} x_0,\mathsf{T} x_0,x_0) &\leq & \max\left\{ a \mathcal{S}(x_0,x_0,x_0), \frac{b}{2} \left[\mathcal{S}(\mathsf{T} x_0,\mathsf{T} x_0,x_0) + \mathcal{S}(\mathsf{T} x_0,\mathsf{T} x_0,x_0) \right] \right\} \\ &= & b \mathcal{S}(\mathsf{T} x_0,\mathsf{T} x_0,x_0), \end{split}$$

a contradiction because of $b \in [0, 1)$. This shows that $Tx_0 = x_0$.

We have two cases:

Case 1: If $\rho = 0$, then we get $C_{x_0,\rho}^S = \{x_0\}$ and clearly this is a fixed circle of T.

Case 2: Let $\rho > 0$ and $x \in C^S_{x_0,\rho}$ be any point such that $Tx \neq x$. Then we have

$$S(\mathsf{T} \mathsf{x}, \mathsf{T} \mathsf{x}, \mathsf{x}) > 0$$

and using the hypothesis we obtain,

$$\begin{split} \mathcal{S}(\mathsf{T} x,\mathsf{T} x,x) &\leq & \max\left\{ \mathfrak{a} \mathcal{S}(x,x,x_0), \frac{\mathfrak{b}}{2} \left[\mathcal{S}(\mathsf{T} x_0,\mathsf{T} x_0,x) + \mathcal{S}(\mathsf{T} x,\mathsf{T} x,x_0) \right] \right\} \\ &\leq & \max\{\mathfrak{a} \rho,\mathfrak{b} \rho\} < \rho, \end{split}$$

which is a contradiction with the definition of ρ . Hence it should be Tx = x whence $C_{x_0,\rho}^S$ is a fixed circle of T.

Corollary 3 If T is an S-Zamfirescu type $x_0\text{-mapping}$ with $x_0\in X$ and the condition

$$\mathcal{S}(\mathsf{T}x,\mathsf{T}x,\mathsf{x}_0) \leq \rho$$

holds for each $x \in D^{S}_{x_{0},\rho}$ then $D^{S}_{x_{0},\rho}$ is a fixed disc of T, that is, $D^{S}_{x_{0},\rho} \subset Fix(T)$.

Now we give an illustrative example to show the effectiveness of our results.

Example 3 Let $X = \mathbb{R}$ and (X, S) be the S-metric space defined as in Example 1. Let us define the self-mapping $T : X \to X$ as

$$Tx = \begin{cases} x & ; x \in [-3,3] \\ x+1 & ; x \notin [-3,3] \end{cases},$$

for all $x \in \mathbb{R}$. Then T is an S-Zamfirescu type x_0 -mapping with $x_0 = 0$, $a = \frac{1}{2}$ and b = 0. Indeed, we get

$$\mathcal{S}(\mathsf{T} \mathsf{x},\mathsf{T} \mathsf{x},\mathsf{x}) = 2\,|\mathsf{T} \mathsf{x} - \mathsf{x}| = 2 > 0,$$

for all $x \in (-\infty, -3) \cup (3, \infty)$. So we obtain

$$\begin{split} \mathcal{S}(\mathsf{T}x,\mathsf{T}x,x) &= 2 \leq \max\left\{ a S\left(x,x,0\right), \frac{b}{2} \left[\mathcal{S}(0,0,x) + \mathcal{S}(x+1,x+1,0) \right] \right\} \\ &= \frac{1}{2} . 2 \left| x \right|. \end{split}$$

Also we have

$$\rho = \inf \left\{ \mathcal{S}(\mathsf{T} x, \mathsf{T} x, x) : \mathsf{T} x \neq x, x \in X \right\} = 2$$

and

$$\mathcal{S}(\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{x},\mathsf{0}) = \mathcal{S}(\mathsf{x},\mathsf{x},\mathsf{0}) \leq 2,$$

for all $x \in C_{0,2}^S = \{x : S(x, x, 0) = 2\} = \{x : 2 | x | = 2\} = \{x : |x| = 1\}$. Consequently, T fixes the circle $C_{0,2}^S$ and the disc $D_{0,2}^S$.

Acknowledgement

This work is supported by the Scientific Research Projects Unit of Balıkesir University under the project numbers BAP 2018 /019 and BAP 2018 /021.

References

- R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl., 445 (2017), 1239–1242.
- [2] R. K. Bisht and R. P. Pant, Contractive definitions and discontinuity at fixed point, Appl. Gen. Topol., 18 (1) (2017), 173–182.
- [3] R. K. Bisht and N. Hussain, A note on convex contraction mappings and discontinuity at fixed point, J. Math. Anal., 8 (4) (2017), 90–96.
- [4] R. K. Bisht and V. Rakočević, Generalized Meir-Keeler type contractions and discontinuity at fixed point, *Fixed Point Theory*, **19** (1) (2018), 57–64.
- [5] R. K. Bisht, (ε δ) conditions and fixed point theorems, *Tbil. Math. J.* 12 (3) (2019), 39–49.
- [6] R. K. Bisht and N. Ozgür, Geometric properties of discontinuous fixed point set of (ε – δ) contractions and applications to neural networks, Aequationes Math., 94 (5) (2020), 847–863. https://doi.org/10.1007/s00010-019-00680-7
- [7] M. Forti and P. Nistri, Global convergence of neural networks with discontinuous neuron activations, *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, **50** (11) (2003), 1421–1435.
- [8] A. Gupta, Cyclic contraction on S-metric space, Int. J. Anal. Appl., 3 (2) (2013), 119–130.
- [9] N. T. Hieu, N. T. Ly and N. V. Dung, A generalization of Ciric quasicontractions for maps on S-metric spaces, *Thai J. Math.*, **13** (2) (2015), 369–380.
- [10] J. Jachymski, Common fixed point theorems for some families of maps, Indian J. Pure Appl. Math., 25 (1994), 925–937.
- [11] J. Jachymski, Equivalent conditions and Meir–Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293–303.

- [12] X. Liu, T. Chen, J. Cao and W. Lu, Dissipativity and quasisynchronization for neural networks with discontinuous activations and parameter mismatches, *Neural Networks*, **24** (10) (2011), 1013–1021.
- [13] W. Lu and T. Chen, Dynamical behaviors of Cohen–Grossberg neural networks with discontinuous activation functions, *Neural Networks*, 18 (3) (2005), 231–242.
- [14] W. Lu and T. Chen, Dynamical behaviors of delayed neural network systems with discontinuous activation functions, *Neural Computation*, 18 (3) (2006), 683–708.
- [15] N. Mlaiki, U. Çelik, N. Taş, N. Y. Özgür and A. Mukheimer, Wardowski type contractions and the fixed-circle problem on S-metric spaces, J. Math., 2018, Article ID 9127486.
- [16] N. Mlaiki, N. Taş and N. Y. Özgür, On the fixed-circle problem and Khan type contractions, Axioms, 7 (2018), 80.
- [17] N. Y. Ozgür and N. Taş, Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), *Math. Sci.* (Springer), **11** (1) (2017), 7–16.
- [18] N. Y. Özgür, N. Taş, Generalizations of metric spaces: from the fixedpoint theory to the fixed-circle theory, In: Rassias T. (eds) Applications of Nonlinear Analysis. Springer Optimization and Its Applications, vol 134. Springer, Cham, 2018.
- [19] N. Y. Ozgür and N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42 (4) (2019), 1433–1449.
- [20] N. Y. Ozgür and N. Taş, Fixed-circle problem on S-metric spaces with a geometric viewpoint, *Facta Universitatis. Series: Mathematics and Informatics*, **34** (3) (2019), 459–472.
- [21] N. Y. Ozgür, N. Taş and U. Çelik, New fixed-circle results on S-metric spaces, Bull. Math. Anal. Appl., 9 (2) (2017), 10–23.
- [22] N. Y. Ozgür and N. Taş, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conference Proceedings, 1926, 020048 (2018).
- [23] N. Y. Ozgür, Fixed-disc results via simulation functions, Turkish J. Math., 43 (6) (2019), 2794–2805.

- [24] A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, *Filomat*, **31** (11) (2017), 3501–3506.
- [25] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., 240 (1999), 284–289.
- [26] R. P. Pant, N.Y. Özgür and N. Taş, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc., 43 (1) (2020), 499–517.
- [27] R. P. Pant, N. Y. Ozgür and N. Taş, Discontinuity at fixed points with applications, Bulletin of the Belgian Mathematical Society-Simon Stevin, 26 (4) (2019), 571–589.
- [28] B. E. Rhoades, Contractive definitions and continuity, Fixed point theory and its applications (Berkeley, CA, 1986), 233–245, *Contemp. Math.*, 72, Amer. Math. Soc., Providence, RI, 1988.
- [29] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, *Mat. Vesnik*, 64 (3) (2012), 258–266.
- [30] N. Taş, N. Y. Özgür and N. Mlaiki, New types of F_C-contractions and the fixed-circle problem, *Mathematics*, 6 (10) (2018), 188.
- [31] N. Taş, Suzuki-Berinde type fixed-point and fixed-circle results on Smetric spaces, J. Linear Topol. Algebra, 7 (3) (2018), 233–244.
- [32] N. Taş, Various types of fixed-point theorems on S-metric spaces, J. BAUN Inst. Sci. Technol., 20 (2) (2018), 211–223.
- [33] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math., 23 (1972), 292–298.