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1. Introduction

To find relationships between the extrinsic and intrinsic invariants of a submanifold has been very popular problems in
the last twenty five years. The first study in this direction was started by B.-Y. Chen in 1993. He established some inequalities
between the main extrinsic (the squared mean curvature) and main intrinsic invariants (the scalar curvature and the Ricci
curvature, or the delta-invariant § (2)) of a submanifold in a real space form [6]. In 1999, Chen also established a relation
between the Ricci curvature and the squared mean curvature for a submanifold [7]. After that, many papers have been
published by various authors in different ambient spaces. In 2011, Chen published a book which consists of all studies in
these directions [10]. The topic is still very popular and there are many new papers related to the inequalities which are
introduced by Chen. For example see [1], [3], [4], [7], [15], [16], [17], [18], [21] and [23].

Let (M, g) and (B, g/) be m and b-dimensional Riemannian manifolds, respectively. A Riemannian submersion 7 : M — B
is a mapping of M onto B such that w has a maximal rank and the differential ., preserves the lengths of the horizontal
vectors [19]. In [8], Chen proved a simple optimal relationship between Riemannian submersions and minimal immersions.
In [9], Chen considered the equality case of the inequality obtained in [8]. In [2], Alegre, Chen and Munteanu established a
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sharp relationship between the §-invariants and Riemannian submersions with totally geodesic fibers. In [22], Sahin intro-
duced anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. In [13], Kiipeli,
Murathan and in [14], Lee introduced anti-invariant submersions from Sasakian manifolds. In [12], Giilbahar, Meri¢ and Kilig
obtained sharp inequalities involving the Ricci curvature for invariant Riemannian submersions.

Motivated by the above studies, in the present study, we consider anti-invariant Riemannian submersions from Sasakian
manifolds onto Riemannian manifolds. We obtain sharp inequalities involving the Ricci curvature and the scalar curvature.

The paper is organized as follows: In Section 2, we give a brief introduction about Sasakian manifolds and submersions.
We give some lemmas which will be used in Section 3 and Section 4. In Section 3, we obtain some inequalities involving
the Ricci curvature and the scalar curvature on the vertical and horizontal distributions for anti-invariant Riemannian sub-
mersions from Sasakian space forms. The equality cases are also discussed. In Section 4, we prove Chen-Ricci inequalities on
the vertical and horizontal distributions for anti-invariant Riemannian submersions from Sasakian space forms. We find re-
lationships between the intrinsic and extrinsic invariants using fundamental tensors. The equality cases are also considered.

2. Preliminaries

Let w : M — B be a Riemannian submersion. We put dim M =2m+ 1 and dim B = b. For x € B, Riemannian submanifold
=1 (x) with the induced metric g is called a fiber and denoted by M. A vector field on M is called vertical, if it is tangent
to fibers and horizontal, if it is orthogonal to fibers. We notice that the dimension of each fiber is always 2m+1—b) =r
and dimension of the horizontal distribution is b = (2m + 1 —r). In the tangent bundle TM of M, the vertical and horizontal
distributions of M are denoted by V (M) and H (M), respectively. We call a vector field X on M projectable, if there exists a
vector field X, on B such that (Xp) = Xuz(p) for each p € M. In this case, we call that X and X, are m-related. A vector
field X on M is called basic, if it is projectable and horizontal ([19] and [20]). For each p € M the vertical and horizontal
spaces in TpM are denoted by V), (M) and Hp, (M), respectively.

The tensor fields T and A of type (1, 2) are defined by

TgF =hVyguF + uVyghF
and
ApF =hVygvF + vVyghF,

respectively.
Denote by R, R, R and R* the Riemannian curvature tensors of Riemannian manifolds M, B, the vertical distribution V
and the horizontal distribution 7, respectively. Then the Gauss-Codazzi type equations are given by

RWU,V,F,W) =§(U, V,F,W)+g(TyW,TyF)—-g(TyW,TyF), (2.1)
R(X,Y,Z,H)=R*"(X,Y,Z,H) —2g (AxY,AzH)
+8(AyZ, AxH) — (AxZ, AyH), (2.2)
RX,V,Y,W)=g((VxT) (V,W),Y)+g (Vv A) (X, Y), W)
—g(TvX, TwY)+g(AyW, AxV), (2.3)
where

7 (R* (X, Y) Z) =R (0, X, ,.Y) 70, Z

forany X,Y,Z,HeH (M) and U, V,F, W € V(M) [19].
Moreover, the mean curvature vector field H of any fiber of Riemannian submersion 7 is given by

,
H=rN, N=) TyUj
j=1

where {U4q,...,U;} is an orthonormal basis of the vertical distribution V. Furthermore, 7t has totally geodesic fibers if T
vanishes on H (M) and V (M) [19].
Now we give the following lemmas:

Lemma 2.1. [11] Let (M, g) and (B, g/) be Riemannian manifolds admitting a Riemannian submersiont : M — B.For E,F,G € TM,
we have

g(TgF,G)=—g(F,TgG),
g(AgF,G)=—g(F, AgG).

That is, Ag and T are anti-symmetric with respect to g.
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Lemma 2.2. [11] Let (M, g) and (B, g’) be Riemannian manifolds admitting a Riemannian submersion 7w : M — B.
(i) ForU,V e V (M),
TyV =TyU;
(ii) For X, Y e H(M),AxY = —AyX.

For more details for Riemannian submersions see also [24].
Let (M, ¢,&,1n, g) be a (2m + 1)-dimensional contact metric manifold. If in a contact metric manifold,

Vx§=—¢X, (Vx¢)Y=gX.Y)§-n()X,

then (M, V, g,¢,&,n) is called a Sasakian manifold [5], where V denotes the Levi-Civita connection of g. A plane section
7 in TM is called a ¢-section, if it is spanned by X and ¢ X, where X is a unit tangent vector field orthogonal to &. The
sectional curvature of a ¢-section is called a ¢-sectional curvature. A Sasakian manifold with constant ¢-sectional curvature
c is said to be a Sasakian space form [5] and is denoted by M(c). The curvature tensor R of M(c) is expressed by

3 -1
RX.V)Z = T2V, 20X = g(X, DY ]+ = (0N (@)

—n(N)X +g(X, nY)§ —g(Y, )n(X)§ + g(oY, 2)¢X
— 8(pX, 2)pY —28(¢X.Y)9Z]. (24)

Definition 2.1. [13] Let (M, V, g, ¢, £, 1) be a Sasakian manifold and (B, g’) a Riemannian manifold. A Riemannian submer-
sion 7w : M — B is called anti-invariant, if V (M) is anti-invariant with respect to ¢, i.e. ¢ (V (M)) € H (M).

Let 7w : (M,V,g,¢,&,1n) — (B,g/) be an anti-invariant Riemannian submersion from a Sasakian manifold (M, V, g, ¢,
&, 1) to a Riemannian manifold (B, g’). From Definition 2.1, we have ¢ (V (M))NH (M) # {0}. We denote the complementary
orthogonal distribution to ¢ (V (M)) in ‘H (M) by w. Then we have

HM)=¢ V(M) D u.
Suppose that & is vertical. It is easy to see that w is an invariant distribution of # (M) under the endomorphism ¢. Thus
for X € H (M), we write
¢X=BX+CX,
where BX € V(M) and CX € x (1) [13].
Suppose that & is horizontal. It is easy to see that u = ¢u & {£}. Thus for X € H (M), we write
¢X=BX+CX,
where BX € V(M) and CX € x (1) [13].
Lemma 2.3.[13] Let w : M — B be an anti-invariant Riemannian submersion from a Sasakian manifold (M, V, g, $,&,7n) to a
Riemannian manifold (B, g').

(i) If € is vertical, then C2X = —X — ¢BX;
(ii) If € is horizontal, then C2X = —X + 1 (X) & — $BX.

Example 2.1. [5] Let us take M = R2m+1 with the standard coordinate functions (x1, ..., Xm, Y1, ---» ¥Ym, Z), the contact struc-

ture n = %(dz - Zf"ﬂ yidx;), the characteristic vector field & = 2% and the tensor field ¢ given by

0 & O
¢=|—-6; 0 O
0 Vi 0

m

The Riemannian metric is g =n®n+ 5 Y ((dx)? + (dy;)?). Then (M?™+1, ¢, &, 7, g) is a Sasakian space form with constant
i=1

¢-sectional curvature ¢ = —3 and it is denoted by R2™+1(—3). The vector fields

0 0 d ad
Ei=2—, Eizm=¢Xi =2(— i—), 1<i<m, §=2—,
i i i+m = ¢ Xi (3)(1' + Vi 82) & 9z

form a g-orthonormal basis for the contact metric structure.
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Example 2.2. [13] We consider M = R3(—3) with the structure given in Example 2.1. The Riemannian metric gp: is given

by
_1jto
SR =310 1

on R2. Let 7 : R5(-3) — R2 be a map defined by

T (X1,X2,Y1,Y2,2) = (X1 + Y1, %2+ y2).
Then

V(M) =sp{Vi=E1 —E3,Vy=Ey —E4,V3=Es=§}
and

H(M)=sp{Hi=E1+E3, Hy=E> + Ea}.

So mr is a Riemannian submersion. Moreover, ¢V = H1, $V, = Hz, $V3 = 0 imply that ¢(V (M)) = H (M). Hence 7 is an
anti-invariant Riemannian submersion such that & is vertical.

Example 2.3. [13] We consider M = R3(—3) with the structure given in Example 2.1. Let N = R3 — {(y1,y2.2) € R3 |
y3 + y% <2}. The Riemannian metric tensor gy is given by

1 yiya _ ¥
1 2 % 2
—_ | iy 1 _Jy2
EN=7| 73 2 2
N _» 1
2 2

on N. Let 7 : R3(—3) — N be a map defined by

i oy
T (X1,X2, Y1, Y2,2) = x1+y1,><z+yz,71+72+z )

Then

V(M) =sp{Vi=E1 —E3,Vy=E; — E4}

and

H(M)=sp{Hi =E1+E3,Hy=E;+E4, Hy=E5 =§&}.
So 7t is a Riemannian submersion. Moreover, ¢V = H1, V2 = Hy imply that ¢ (V (M)) Cc H (M) = ¢ (V (M)) & {£}. Hence
7 is an anti-invariant Riemannian submersion such that & is horizontal.

3. Inequalities for anti-invariant Riemannian submersions

In the present section, we aim to obtain some inequalities involving the Ricci curvature and the scalar curvature on the
vertical and horizontal distributions for anti-invariant Riemannian submersions from Sasakian space forms. We shall also
consider the equality cases of these inequalities.

Using (2.4) and (2.1), we have

~ 3
R(U,V,F,W)Z%{g(V,F)g(U,W)—g(U,F)g(V,W)}

+ %{n(U)n(F)g(V, W)—n(V)nF)gU, W)

+n(V)nW)gWU,F)—nU)n(W)g(V,F)+g@V.F)g(oU, W)

—&(pV.W)g@U,F)—2g(W,9F)g(¢U,V)}

—g(TyW,TyF)+g(TyW,TyF). (3.1)
Similarly, from (2.4) and (2.2), we get
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" c+3
R*(X,Y,Z,H) = 2 {g(Y,Z2)g(X.H)—g(X,2)g(Y,H)}

1
+ i 1 nX)n2)g(Y,H)—n{Y)n(Z2)gX, H)
+nMnH)gX,2)—nX)nH)g(Y.Z)+g@Y,Z)g(¢X, H)

—2@Y. H)g@X,2)-2g(H,¢2) g (¢X,Y)}

+2g(AxY,AzH) —g(AyZ,AxH) + (AxZ, AyH). (3.2)

Let (M(c), g), (B, g’) be a Sasakian space form and a Riemannian manifold, respectively and 7 : M(c) — B an anti-invariant
Riemannian submersion. Furthermore, for each point p € M, let {Uy, ..., Uy, X1, ..., X} be an orthonormal basis of T, M(c)
such that V), (M) =span{U1, ..., Us}, Hp (M) = span{X1, ..., Xn}.

Case I: Assume that & is vertical.

For the vertical distribution, in view of (3.1), since v is anti-invariant and & is vertical, with the use of U; = U, we find

few =" o-ngw, U)+—{<2—r)n(U> —gU. L)}

—rg(TUU,H)—i-Zg(TUjU, TyUj).
j=1

Hence we obtain the following proposition:

Proposition 3.1. Let v : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold (B, g’) such that & is vertical. Then
RlC(U) > — (r— 1)— —— {(r—Z)n(U) +1] —rg(TyU, H).

The equality case of the inequality holds for a unit vertical vector U € V, (M(c)) if and only if each fiber is totally geodesic.

Similarly, in view of (3.1), using the symmetry of T, we have

. c+3 c—1 P
2= rr =D+ @-2n) —r*|H]| +.Z g (Tu,Uj, Ty, Uj),
i,j=1
where T= Y ﬁ(Ui,Uj,Uj,Ui).Thenwecanwrite

I<i<j<r

~_C+3 c—1 5 2
2T > rar—1)— r—1—=r|lH|".

The equality case of the inequality holds if and only if T =0, which means that each fiber is totally geodesic. Thus we can
state the following proposition:

Proposition 3.2. Let 7w : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold (B, g') such that & is vertical. Then

. Cc+3 c—1
2T > Lr(r— 1)——@—-1)—r*|H|>.
4 2
The equality case of the inequality holds if and only if each fiber is totally geodesic.

For the horizontal distribution, in view of (3.2), since 7 is anti-invariant and & is vertical, using the anti-symmetry of A,
we find

c+3

20t =— =1
1 r3@c—-1)
+> [Tg(cxi,xj)g(cxi,xj) —-3g (Axixj,Axixj)]. (33)
i,j=1

By the use of Lemma 2.3, we obtain
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c+3 3 .
2-5*:Tn(n—l)—i—Z(C—1)(n+fr(¢3))—‘Zl3g(AXixijXin)'
i,j=
Then we can write
. _C+3 3
20 s =D+ 2 (=D +1r(¢B), (3.4)

where 7¥= > R* (X,~, X, Xj, X,—). The equality case of (3.4) holds if and only if A =0, which means that the horizontal
1<i<j<n
distribution is integrable. So we can state the following result:

Proposition 3.3. Let 7w : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold (B, g') such that & is vertical. Then

c+3 3

2t* < n(n—1)+Z(c—1)(n+tr(¢B)).

The equality case of (3.4) holds if and only if H (M) is integrable.

Case II: Assume that & is horizontal.
From (3.1), since m is anti-invariant submersion, after some computations, we have

c+3
4

2T=

.
rr—10—r>HI>+ > g(Ty,Uj, Tu,Uj).
i, j=1

Hence we can state the following proposition:

Proposition 3.4. Let 7t : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold (B, g') such that § is horizontal. Then

. c+3
2T > + rar—1) —r?|H|?.

The equality case of the inequality holds if and only if each fiber is totally geodesic.

For the horizontal distribution, from (3.2), since & is horizontal and A is anti-symmetric, after some computations, we
have

3 L fe—1
2t* = %n(n— D+ [C y {2—2n+3g(CXi, X;) g(CXi, X;)}
i,j=1
—3g(Ax X, AxXj)].

Then using Lemma 2.3, we obtain

c+3 c—1 N
27 = — "D+ ——Gr¢B+n—1) - > 3g(AxXj. Ax.X))

i,j=1
where 7= Y R* (X, Xj, Xj, Xi).
1<i<j<n
So we can state the following result:

Proposition 3.5. Let 7t : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rie-
mannian manifold (B, g’) such that & is horizontal. Then

c+3 c—1)
2t < —n(n—-1
= ( ) + 2

The equality case of the inequality holds if and only if H (M) is integrable.

GBtr(¢B) +n—1).

6
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4. Chen-Ricci inequalities for anti-invariant Riemannian submersions

In this section, we aim to obtain Chen-Ricci inequality on the vertical and horizontal distributions for anti-invariant Rie-
mannian submersions from a Sasakian space forms onto a Riemannian manifold. The equality cases will be also considered.

Let (M(c), g) be a Sasakian space form and (B, g/) a Riemannian manifold. Assume that 7 : M(c) — B is an anti-invariant
Riemannian submersion and {Uy, ..., U, X1, ..., Xy} is an orthonormal basis of T,M(c) such that V,(M) = span{U1, ..., U;},
Hp(M) =span {Xi, ..., Xp}. Now we denote Tfj by

Tj =g (TuiUj, Xs) , (4.1)
where 1 <i,j<rand 1<s<n (see [12]).
Similarly, we denote Afj‘. by
A% =g (AxiXj, Ua), (4.2)

where 1 <i,j<nand 1 <« <r. From [12], we use

s =3¢ ((inT)Uk Us, xl-) . (4.3)

i=1k=1

Case I: Assume that & is vertical.
Then from (3.1), we have

c+
4

c—1 d
S =D =r? [HI2+ 37 g(TyUj. Ty Uj).
i,j=1

- 3
2T = rr—1)—

Using (4.1) in the last equality and the symmetry of T, we can write

~ C+3 PN N 2 1< s\2
2= rr =)= —— =1 - |H| +> > (1) - (4.4)
s=11i,j=1

We know from [12] that

n

nor 21 1
Y30 (1) =5 IHIP + 5 Y [T~ T — o~ THT

s=1i,j=1 s=1
n r 2 n r 2
w2y () -2y ¥ |mm- ()] @5)
s=1 j=2 s=12<i<j<r

So using (4.5) in (4.4), we get

. C+3 c—1
2T=—-710C-1)——(@0—-1
2 ( ) 5 ( )
1 1< 2
2 2
=3 IHIl +§;[T§1—T§2—...—Tfr
n r 2 n r )
w2 (1) 2L X |mn- ()]
s=1 j=2 s=12<i<j<r

Then from the last equality, we have

2?>C+3r(r 1 C_l(r 1
= 4 2

_ %rz IHIZ =23 Y [T;Tj.j - (Tf])z] . (46)

s=12<i<j<r

Furthermore, from (2.1), taking U =W =U;, V =F =U; and using (4.1), we can write

7
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2 > R(ULULUU)=2 Y R(ULU;U;U)

2<i<j<r 2<i<j<r

n 2
w2y ¥ [mm- ()]
s=12<i<j<r
In view of the last equality, (4.6) can be written as
. _Cc+3 c—1 1
2> — (=) — —— (=1 - —r2 IH|?
+2 Y R UI,U],UJ,U) 2 > R(ULULU;LUY. (4.7)
2<i<j<r 2<i<j<r

Then using the equality

.
2t=2 Y R(Ui.Uj.Uj,Ui)+2) R(U1.Uj.Uj, Uy), (4.8)

2<i<j<r j=1

in view of (4.7), we have

— c+3 c—1
2Ric(Uqy) > rr—1)— r—1)

1
- Er2 IHI>=2 Y R(Ui.Uj.U;.Uj).

2<i<j<r

Since M is a Sasakian space form, its curvature tensor R satisfies the equality (2.4). So we obtain

—~ c+3
Ricuy = <&

c—1 2 oy
=1+ [@-rmun?-1} -2 102,

Hence we state the following theorem:

Theorem 4.1. Let 7 : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold (B, g') such that & is vertical. Then

— 3 -1 1
RiewWnz = = - = {a-2mwi? +1} - 22 Hi2.

The equality case of the inequality holds if and only if
TS, =T%, + ..+ TS,
T1;=0, j=2,..,r.

On the other hand, using (4.2) and Lemma 2.3, the equation (3.3) can be rewritten as

20% = ?n(n—l)qL%(c—l)(n—f—tr(q&B))—BZ 3 (A;?;)z.

a=1i,j=1

Since A is anti-symmetric on H (M (c)), the above equality turns into

. C+3
27 :Tn(n—l)—i- (c—l)(n+tr(¢B))
—6212(/*%) —621 > (a)" (4.9)
a=1 j=2 a=12<i<j<n

Furthermore, from (2.2), taking X =H = X;, Y = Z = X; and using (4.2), we have

2 Y R(X X XpX)=2 Y R*(Xi.Xj. Xj.Xi)

2<i<j<n 2<i<j<n

6 Y (a7)". (4.10)

a=12<i<j<n
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If we consider the last equality in (4.9), then we get

., C+3 3 e )2
27 =Tn(n—l)—l—Z(c—l)(n+tr(¢3))—GZZ(A”)
a=1 j=2
+2 ) RT(Xu Xj X5 Xi) =2 Y R(Xi. Xj. Xj. Xi).

2<i<j<n 2<i<j<n
Since M is a Sasakian space form, its curvature tensor R satisfies the equality (2.4). Then we have

c+3
2

ey (%)

a=1 j=2

2Ric* (Xq) =

3 2
=D+ 2c-DICX

So we can write
- c+3 3 2
Ric (X1)§T(n—1)+z(6—1)IICX1II .

Hence we obtain the following theorem:

Theorem 4.2. Let w : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-

nian manifold (B, g') such that & is vertical. Then

. c+3 3
Ric* (X1) = — = =1+ 2= DICX: .
The equality case of the inequality holds if and only if

A1j=0, j=2,...n.

Now, we compute the Chen-Ricci inequality between the vertical and horizontal distributions for the case of & is vertical.

For the scalar curvature t of M(c), we obtain

n r
2t=) Ric(Xs, Xs) + ) Ric (Ur, Xi),
s=1 k=1
r

n r
2= R(Uj.Ur. U Uj) + Y > R(Xi, Uy Up. Xi)

jk=1 i=1k=1
n n r
+ Y RXi, Xs, X5, Xi) + )Y R(Uj, X5, X5, Uj) .
i,s=1 s=1j=1

Since M(c) is a Sasakian space form, using (4.11) and (2.4), we find
c+3
4
On the other hand, from the Gauss-Codazzi type equations (2.1), (2.2) and (2.3), we have

2T = (r(r—l)+n(n—1)+2m’)+%(4(r—1)+n+3tr¢8).

.
2t =242t + 2 [HI>+ ) g(Tu,Uj, Ty, Uj)
k,j=1

n n r
+3 3 g (AxXs AxXs) = D)8 ((VxT)y, Uk Xi)

i,s=1 i=1k=1

+ iz {g (TuXi, TugXi) — & (Ax, Uk, Ax,Ux)} — anijg ((VT)y, U Xs)

i=1 k=1 s=1j=1

n r
+) ) g (Tu;Xs, Tu; Xs) — g (Ax.Uj, Ax,Uj) )
s=1 j=1

(411)

(412)

(413)
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Using (4.5) and (4.3), we get

n

- 1 1
2T =27+ 2T + 5r2 IH|? — 5 S5 - 15— = TS T
s=1
n r ) n r 2 r n )
S Y (1) #2220 |mrie- (1) |+ o an)
s=1 j=2 s=12<j<k<r a=1s=2
r ) n r
+6 Z Z (Az%) + ZZ {g (TUkXi’ TUka) -8 (AX:' Uk, AXiUk)}
a=12<i<s<n i=1 k=1
n r
—26(N)+ Y>> {g(Tu; Xs. Tu,;Xs) — g (Ax,Uj. Ax,Uj)}.
s=1 j=1
By making use of (4.8), (4.10) and (4.12) in the last equality, we obtain
c+3 c—1
an—i— T(B(r—l)—n)
r n
+2) R(U1, U, Up, Ur) + 2D R (X1, Xs, X5, X1)
k=1 s=1
— 2R3 (Ur) + 2Ric* (X1) + o1 [H|2 - 12n:[rs S E—
1 1 2 2 11 22 7 e r

s=1

- zii (Tij)z + Gi i( (1)55)2 + ii {g(Tu Xi Ty, Xi) — g (Ax; Uk, Ax;Uk)}

s=1 j=2 a=1s=2 i=1 k=1
n r
—25(N)+ Y Y {g(Tu;Xs. Tu; Xs) — & (Ax,Uj, Ax.Uj)} -
s=1 j=1
We denote

2 n r
”TV ” =33 g(Tu Xi. Tu,Xi)

i=1 k=1
and

n r
4] = o3 s (A Ax ).

i=1 k=1
(see [12]).
Since (M(c), g) is a Sasakian space form, from (2.4), we obtain the following theorem:

Theorem 4.3. Let 7 : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold (B, g') such that & is vertical. Then

c+3 c—1 —~ . 1
T{nr+n+r—2}+ 7 [3r—4—n—(r—2)n(U1)2+3||CX]||2} < Ric (Uy) + Ric* (X1) + Zrz I1H|I?

r n 2 2
£33 3 (A% —san+|TY| - |an] .
a=1s=2
The equality case of the inequality holds if and only if
T3 = T;z +..+ T},
T1j=0, j=2,..,r1.

Case II: Assume that & is horizontal.
From (3.1), similar to Theorem 4.1, we can state the following theorem:

10
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Theorem 4.4. Let 7w : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold (B, g') such that & is horizontal. Then

— c+ 3 1 2 2
Ric(Uy) > —— (r—1)— -r“||H||”.
U = 1 ( ) 2 IH]
The equality case of the inequality holds if and only if

Th=Tyn+..+Tp
T]j :O, j:2, ey I

From (3.2), similar to Theorem 4.2, we have the following theorem:

Theorem 4.5. Let 7w : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold (B, g') such that & is horizontal. Then

- c+3 c—1 2 2
Ric* (X1) = —— =D+ —— [@=mn(x)? = 1+3]Cxi |12}
The equality case of the inequality holds if and only if

A1j=0, j=2,..n.

Now, we compute the Chen-Ricci inequality between the vertical and horizontal distributions for the case of & is hori-
zontal. Since £ is horizontal, from (4.11), we find

c+3 c—1
2T = 4 [rr—=1)4+nm—-1)+2nr]+ a [n+3tr¢B +4r —7].
Using the above equation, (4.13), (4.5), (4.8), (4.10) and (4.3), we get
c+3

nr+ -1 @2r—-3)
2 2
r n
+2) R(U1, Up, Up, U +2) R (X1, Xs, Xs, X1)
k=1 s=1
1 1< 2
= . 2 2
=2Ric (Uy) + 2Ric* (X1) + ST IHIZ = 2 DT =T - =T}

s=1

L2 () e Y (A -2

s=1 j=2 a=1s=2
nor
+ > g (TuXs, Tu;Xs) — g (Ax,Ujj, Ax,Uj) }
s=1 j=1

n T
+ > {g(Tu Xi. Ty Xi) — g (Ax,Uk. Ax,Ui) } -
i=1 k=1

Hence in view of (2.4), we obtain the following theorem:

Theorem 4.6. Let 7 : M(c) — B be an anti-invariant Riemannian submersion from a Sasakian space form (M(c), g) onto a Rieman-
nian manifold (B, g') such that & is horizontal. Then

3 -1
%{nr—l—n—l—r—Z}—i—cT[2r—4—(n—2)n(X1)2

5 , 1
+31CX1112} < Rie (Uy) + Ric” (X)) + 572 [1H]1?

L s [ <[

a=1s=2

11
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The equality case of the inequality holds if and only if

T{ =T+ .+ T
T1j=0, j=2,..r.
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