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Abstract. In this study, we aim to comprehensively investigate a drinking

model connected to immigration in terms of Atangana-Baleanu derivative in
Caputo type. To do this, we firstly extend the model describing drinking model

by changing the derivative with time fractional derivative having Mittag-Leffler

kernel. The existence and uniqueness of the drinking model solutions together
with the stability analysis is shown by the help of Banach fixed point theorem.

The special solution of the model is investigated using the Sumudu trans-

formation and then, we present some numerical simulations for the different
fractional orders to emphasize the effectiveness of the used derivative.

1. Introduction. Mathematical modeling is needed to better understand the
causes and effects of many physical, chemical or biological events in our environ-
ment and world. Especially, the biological models related to diseases came to the
forefront due to the more direct effects on human health and life.

From this point of view, scientists from many fields have been developing various
mathematical models for such events in recent years. For instance, Castillo-Chavez
et al. [8] given a comprehensive review on the control and dynamics of the tubercu-
losis model. Mulone et al. [22] designed a two-stage model for youths with serious
drinking problems. In [16], for different latent stages and treatment, an HIV/AIDS
epidemic model is constructed and stability conditions are investigated. Celik et
al. [9, 20] studied the stability of the birth-death process in the relation to the
Keller-Segel model and the optimal control problem for a Schröndinger equation
with complex potential, respectively. Rahman et al. [28] introduced a giving up
smoking model with the continuous age-structure in the chain smokers class. By
these suggested mathematical models, the results of the handled problems under
different factors are investigated with various numerical simulations and can be
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easily adapted to the technology and real life. Furthermore, it can be lead to the
building and testing of new theories in this field.

In recent years, the concept of fractional calculus has also been a subject of
increasing interest to researchers. Many authors, in different disciplines, reported
that fractional derivative reflect the system behavior more accurately and efficiently
than the integer derivative [4, 5, 6, 7, 11, 12, 10, 21, 24, 25, 26, 30, 31, 33, 36]. With
this motivation, the development of new fractional derivative definitions has became
one of the most important research subjects in this field. For this purpose, various
fractional derivative definitions are introduced to the literature. Riemann-Liouville
(RL), and Caputo fractional derivatives are the most classic ones. But the fact that
these derivative definitions have singular points is seen as their biggest shortcoming.
In order to eliminate this deficiency, Atangana and Baleanu [2] have introduced
the new fractional derivative definition in Riemann-Liouville and Caputo type by
adopting the Mittag-Leffler function as a non-local kernel.

The studies conducted over the last years according to this improvement show us
that the new fractional derivative with Mittag-Leffler kernel can be used as an effec-
tive mathematical tool for modeling the complex real-life problems. In this sense,
Atangana and Koca [3] analyzed a nonlinear chaotic system and demonstrated new
chaotic behavior under nonlocal derivative, Alkahtani et al. [1] redefined N1H1
spread model by replacing the time derivative by nonlocal fractional derivative.
Koca [18, 19] handled rubella and Ebola disease models under the Mittag-Leffler
function as a non-local kernel and investigated system response. Toufik and Atan-
gana [32] observed fractional nonlinear chaotic models with a newly defined numer-
ical approximation method. Gómez-Aguilar et al. [15] also described and analyzed
the electrical series circuits using Atangana-Baleanu (AB) fractional derivative. For
computer viruses, Singh et al. [29] presented a fractional epidemiological model.
The nonlinear Baggs-Freedman model is adapted to the AB fractional derivative by
Gómez-Aguilar and Atangana [14]. Jarad et al. [17] investigated existence theory
for a class of ordinary differential equations by newly established Gronwall inequal-
ity for AB fractional integrals. The dynamics of hepatitis E virus is analyzed by
Prakasha et al. [27] considering Atangana-Baleanu derivative. Finally, Ucar et al.
[34] have interested in a smoking mathematical model for analyzing the system
response in the sense of AB fractional derivative.

In the other hand, alcoholism has been one of the most important problems that
societies have not been able to find an exact solution for a long time. It is estimated
that over 2 billion people consume alcohol in the world and about 76 million of them
are addicted to alcohol. In addition, the age of starting to alcohol consumption in
the world is decreasing day by day and this increases the risk of being addicted to
alcohol at later ages. Also, people who consume alcohol are at risk of being exposed
to a number of deadly diseases such as esophageal, throat, stomach and pancreatic
cancers. Moreover, according to a study by the World Health Organization (WHO),
alcohol was defined as the cause of many violent acts such as crime .

Therefore, by the above motivations, this article is devoted to analyzing the
dynamics of the alcohol consumption system modeled with the AB fractional de-
rivative in the Caputo type sense. For this purpose, the drinking model presented
by Xiang et al. [35] is handled by the following integer order form:

dP (t)

dt
= Λ + (1− q1 − q2) Π− εP (t)− ξP (t)L (t)

−αP (t)S (t)− βP (t)Q (t)− µP (t) ,
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dL (t)

dt
= q1Π + εP (t) + ξP (t)L (t) + αP (t)S (t)

+βP (t)Q (t) + ρQ (t)− (µ+ d1 + w)L (t) , (1)

dS (t)

dt
= q2Π + (1− p)wL (t)− (µ+ d2 + φ)S (t) ,

dQ (t)

dt
= pwL (t) + φS (t)− (µ+ d3 + ρ)Q (t) ,

N (t) = P (t) + L (t) + S (t) +Q (t) .

The description of model components and the transfer diagram has been given
by:

P (t) : The moderate alcoholics number at time t,
L (t) : The light drinkers number at time t,
S (t) : The heavy drinkers number at time t,
Q (t) : The treated drinkers number at time t,

Λ : The ratio of recruitment in the population,
Π : The number of immigrants in the population,
qi : (i = 1, 2) The proportion of the number of immigrants who enter light and

heavy drinkers, respectively,
ρ : The failure ratio of the treatment,
ε : The increase rate in the alcohol consumption of moderate drinkers,
ξ : The ratio that moderate alcoholics interact with light drinkers,
α : The ratio that moderate alcoholics contact with heavy drinkers,
β : The ratio that moderate alcoholics interact with those under treatment,
φ : The ratio of treating in heavy alcoholics,
w : The ratio of alcoholics who depart from light drinkers and enter into the

group of heavy alcoholics or treatment,
µ : The ratio of departure from the drinking environment per-person,
di : (i = 1, 2, 3) The ratio of death related to drinking,
p : The ratio of treating in light alcoholics,

Figure 1. The transfer diagram of the alcoholism model under
the effect of immigration.

In the literature, Gómez-Aguilar [13] analyzed a different drinking model under
the effect on Twitter via Liouville-Caputo and AB fractional derivatives. Also,
existence of the unique solutions are shown by the fixed point theory.

Inspired by the above study, the drinking model in (1) is modeled with AB frac-
tional derivative and the existence and uniqueness of the solutions are demonstrated
by the fixed point theorem.
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In order to show the results properly, the next part of the study is divided into
five sections. In Section 2, some basic definitions and theorems of the AB fractional
derivative are summarized. The drinking model with AB fractional derivative is
introduced and the existence of the solutions are proved by the Picard-Lindelof
approach, in Section 3. In Section 4, the specific solution of the model is investigated
by the iterative method created with the Sumudu transformation. Furthermore, the
stability analysis of the method is handled with the help of fixed point postulate,
in Section 5. In Section 6, the theoretical knowledge obtained is supported by
numerical simulations. Finally, in the last chapter, we summarized our findings.

2. Basic tools. In this part, we will briefly summarize some basic definitions and
properties of the AB derivative which will be useful in the following chapters.

Definition 2.1. The Sobolev space of order 1 in (a, b) is given by

H1(a, b) = {g ∈ L2(a, b) : u
′
∈ L2(a, b)}.

Definition 2.2. Let g ∈ H1 (a, b), a < b be a function and η ∈ [0, 1]. The AB
derivative in Caputo type of order η of g is given by [2]

ABC
a Dη

t [g (t)] =
B (η)

1− η

t∫
a

g′ (x)Eη

[
−η (t− x)

η

1− η

]
dx, (2)

where B (η) is a normalization function with B (0) = B (1) = 1 and is of the
following form

B (η) = 1− η +
η

Γ (η)
,

Eη is the Mittag-Leffler function, defined by its series representation as

Eη,β (z) =

∞∑
k=0

zk

Γ (ηk + β)
, η, β > 0.

Definition 2.3. Let g ∈ H1 (a, b), a < b be a function and η ∈ [0, 1]. The AB
derivative in RL type of order η of g is given by [2]:

ABR
a Dη

t [g (t)] =
B (η)

1− η
d

dt

t∫
a

g (x)Eη

[
−η (t− x)

η

1− η

]
dx. (3)

Definition 2.4. The fractional integral associated to the AB fractional derivative
is defined by [2]:

AB
a Iηt [g (t)] =

1− η
B (η)

g (t) +
η

B (η) Γ (η)

t∫
a

g (λ) (t− λ)
η−1

dλ. (4)

3. Existence of solutions by means of Picard-Lindelof method. Let us con-
sider the drinking model (1) with the AB fractional derivative in Caputo type:

ABC
0 Dη

t (P (t)) = Λ + (1− q1 − q2) Π− εP (t)− ξP (t)L (t)

−αP (t)S (t)− βP (t)Q (t)− µP (t) ,
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ABC
0 Dη

t (L (t)) = q1Π + εP (t) + ξP (t)L (t) + αP (t)S (t)

+βP (t)Q (t) + ρQ (t)− (µ+ d1 + w)L (t) ,
ABC
0 Dη

t (S (t)) = q2Π + (1− p)wL (t)− (µ+ d2 + φ)S (t) ,
ABC
0 Dη

t (Q (t)) = pwL (t) + φS (t)− (µ+ d3 + ρ)Q (t) , (5)

with the following initial conditions

P (0) = n1, L (0) = n2,

S (0) = n3, Q (0) = n4,

where ABC
0 Dη

t is AB derivative in Caputo type and η ∈ [0, 1].
In order to show existence of solution, we state the operator as:

m1 (t, P ) = Λ + (1− q1 − q2) Π− εP (t)− ξP (t)L (t)

−αP (t)S (t)− βP (t)Q (t)− µP (t) ,

m2 (t, L) = q1Π + εP (t) + ξP (t)L (t) + αP (t)S (t)

+βP (t)Q (t) + ρQ (t)− (µ+ d1 + w)L (t) ,

m3 (t, S) = q2Π + (1− ρ)wL (t)− (µ+ d2 + φ)S (t) ,

m4 (t, Q) = pwL (t) + φS (t)− (µ+ d3 + ρ)Q (t) . (6)

It can be easily seen that m1, m2, m3, m4 are contraction in accordance with
the functions P , L, S, Q respectively. Let

N1 = sup
C[a,b1]

‖m1 (t, P )‖ ,

N2 = sup
C[a,b2]

‖m2 (t, L)‖ ,

N3 = sup
C[a,b3]

‖m3 (t, S)‖ ,

N4 = sup
C[a,b4]

‖m1 (t, Q)‖ , (7)

where

C [d, e1] = [t− d, t+ d]× [x− e1, x+ e1] = D × E1,

C [d, e2] = [t− d, t+ d]× [x− e2, x+ e2] = D × E2,

C [d, e3] = [t− d, t+ d]× [x− e3, x+ e3] = D × E3,

C [d, e4] = [t− d, t+ d]× [x− e4, x+ e4] = D × E4.

Here,we benefit from the Banach fixed point theorem using the metric on C [a, bi],
(i = 1, 2, 3, 4) induced by the norm given as:

‖f (t)‖ = sup
t∈[t−d,t+d]

|f (t)| (8)

Taking into consideration Picard’s operator

θ : C (D,E1, E2, E3, E4)→ C (D,E1, E2, E3, E4) (9)

given the following definition:

θX (t) = X0 (t) +X (t)
1− η
B (η)

+
η

B (η) Γ (η)

t∫
0

(t− y)
η−1

F (y,X (y)) dy, (10)
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where

X (t) = [P (t) L (t) S (t) Q (t)]
T
,

X0 (t) = [P (0) L (0) S (0) Q (0)]
T
,

F (t,X (t)) = [m1 (t, P (t))m2 (t, L (t))m3 (t, S (t))m4 (t, Q (t))] .

Assume that the problem under examined satisfies

‖X (t)‖ ≤ max {e1, e2, e3, e4} . (11)

Now we consider

‖θX (t)−X0 (t)‖

=

∥∥∥∥∥∥1− η
B (η)

F (t,X (t)) +
η

B (η) Γ (η)

t∫
0

(t− y)
η−1

F (y,X (y)) dy

∥∥∥∥∥∥
≤ 1− η
B (η)

‖F (t,X (t))‖+
η

B (η) Γ (η)

t∫
0

(t− y)
η−1 ‖F (y,X (y))‖ dy

≤ 1− η
B (η)

N +
η

B (η)
Naη,

where N = max {N1, N2, N3, N4} . Let d < e
N and e = max {e1, e2, e3, e4}. Then,

we have

‖θX (t)− θX0 (t)‖ < dN < e. (12)

Also, we evaluate the following:

‖θX1 − θX2‖ = sup
t∈A
|X1 −X2| . (13)

Here, we get

‖θX1 − θX2‖ =

∥∥∥∥1− η
B (η)

(F (t,X1 (t))− F (t,X2 (t)))

+
η

B (η) Γ (η)

t∫
0

(t− y)
η−1

(F (y,X1 (y))− F (y,X2 (y))) dy

∥∥∥∥∥∥
≤ 1− η

B (η)
‖F (t,X1 (t))− F (t,X2 (t))‖

+
η

B (η) Γ (η)

t∫
0

(t− y)
η−1 ‖F (y,X1 (y))− F (y,X2 (y))‖ dy

≤ 1− η
B (η)

q ‖X1 (t)−X2 (t)‖

+
ηq

B (η) Γ (η)

t∫
0

(t− y)
η−1 ‖X1 (y)−X2 (y)‖ dy

≤
(

1− η
B (η)

q +
ηqaη

B (η) Γ (η)

)
‖X1 (t)−X2 (t)‖

≤ dq ‖X1 (t)−X2 (t)‖ , (14)



SYSTEM RESPONSE OF AN ALCOHOLISM MODEL UNDER THE EFFECT OF . . . 2205

with q < 1. By using contraction properties of F , we obtain dq < 1. Thereby θ is
a contraction. This gives the drinking model with AB derivative in Caputo type
given in (5) has a unique set of solution.

4. Derivation of special solution with iterative method. We aim to show
a specific solution of the model by applying Sumudu transform to the Eq. (5)
with a recursive formula in this section. The Sumudu transform for AB fractional
derivative is introduced by Atangana and Koca [3] as follows:

Theorem 4.1. Let η ∈ [0, 1], a < b and f ∈ H1 (a, b). The Sumudu transform for
AB derivative in the Caputo type sense is presented by

ST
{
ABC
0 Dη

t [f (t)]
}

=
B (η)

1− η

(
ηΓ (η + 1)Eη

(
− 1

1− η
uη
))

× (ST (f (t))− f (0)) . (15)

Applying Sumudu transform to the Eq. (5), we find

B (η)

1− η

(
ηΓ (η + 1)Eη

(
− 1

1− η
uη
))

(ST (P (t))− P (0))

= ST {Λ + (1− q1 − q2) Π− εP (t)− ξP (t)L (t)− αP (t)S (t)

−βP (t)Q (t)− µP (t)} ,

B (η)

1− η

(
ηΓ (η + 1)Eη

(
− 1

1− η
uη
))

(ST (L (t))− L (0))

= ST {q1Π + εP (t) + ξP (t)L (t) + αP (t)S (t)

+βP (t)Q (t) + ρQ (t)− (µ+ d1 + w)L (t)} ,

B (η)

1− η

(
ηΓ (η + 1)Eη

(
− 1

1− η
uη
))

(ST (S (t))− S (0))

= ST {q2Π + (1− ρ)wL (t)− (µ+ d2 + φ)S (t)} ,

B (η)

1− η

(
ηΓ (η + 1)Eη

(
− 1

1− η
uη
))

(ST (Q (t))−Q (0))

= ST {pwL (t) + φS (t)− (µ+ d3 + ρ)Q (t)} . (16)

Regulating the Eq. (16), we have

ST (P (t)) = P (0) + ψ

×ST
{

Λ + (1− q1 − q2) Π− εP (t)− ξP (t)L (t)
−αP (t)S (t)− βP (t)Q (t)− µP (t)

}
,

ST (L (t)) = L (0) + ψ

×ST
{

q1Π + εP (t) + ξP (t)L (t) + αP (t)S (t)
+βP (t)Q (t) + ρQ (t)− (µ+ d1 + w)L (t)

}
,

ST (S (t)) = S (0) + ψ

×ST {q2Π + (1− ρ)wL (t)− (µ+ d2 + φ)S (t)} ,

ST (Q (t)) = Q (0) + ψ

×ST {pwL (t) + φS (t)− (µ+ d3 + ρ)Q (t)} , (17)
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where

ψ =
1− η

B (η)
(
ηΓ (η + 1)Eη

(
− 1

1−ηu
η
)) . (18)

Then, we have the following iterative formula

Pn+1 (t) = Pn (0)

+ ST−1

{
ψ × ST {Λ + (1− q1 − q2) Π− εPn (t)− ξPn (t)Ln (t)

−αPn (t)Sn (t)− βPn (t)Qn (t)− µPn (t)}

}
,

Ln+1 (t) = Ln (0)

+ ST−1

{
ψ × ST {q1Π + εPn (t) + ξPn (t)Ln (t) + αPn (t)Sn (t)

+βPn (t)Qn (t) + ρQn (t)− (µ+ d1 + w)Ln (t)}

}
,

Sn+1 (t) = Sn (0)

+ ST−1 {ψ × ST {q2Π + (1− p)wLn (t)− (µ+ d2 + φ)Sn (t)}} ,
Qn+1 (t) = Qn (0)

+ ST−1 {ψ × ST {pwLn (t) + φSn (t)− (µ+ d3 + ρ)Qn (t)}} . (19)

Thus, solution of the Eq. (19) is obtained when n tends to infinitiy:

P (t) = lim
n→∞

Pn (t) , L (t) = lim
n→∞

Ln (t) ,

S (t) = lim
n→∞

Sn (t) , Q (t) = lim
n→∞

Qn (t) . (20)

5. Stability analysis of iteration method using fixed point theory. Let
(E, ‖.‖) be Banach space, W : E → E be a map and hn+1 = ϕ (W,hn) be a special
recursive procedure. Assume that H (W ) is a fixed point set of W with at least one
element hn which converges to a point w ∈ H (W ). Also suppose that {xn} ⊂ X
be sequence and en = ‖xn+1 − ϕ (W,xn)‖. The iteration method hn+1 = ϕ (W,hn)
is said to be H-stable, if limn→∞en = 0 induces that limn→∞xn = w.

Theorem 5.1. Let (E, ‖.‖) be Banach space and W : E → E be a map satisfying

‖Wx −Wy‖ ≤ K ‖x−Wx‖+ k ‖x− y‖ ,

for all x, y ∈ E, where 0 ≤ K, 0 ≤ k < 1. Suppose that W is Picard W -stable [23].

Theorem 5.2. Let M be a self map defined as

M (Pn (t)) = Pn+1 (t)

= Pn (t) + ST−1

{
ψ × ST {Λ + (1− q1 − q2) Π− εP (t)− ξP (t)L (t)

−αP (t)S (t)− βP (t)Q (t)− µP (t)}

}
,

M (Ln (t)) = Ln+1 (t)

= Ln (t) + ST−1

{
ψ × ST {q1Π + εP (t) + ξP (t)L (t) + αP (t)S (t)

+βP (t)Q (t) + ρQ (t)− (µ+ d1 + w)L (t)}

}
,

M (Sn (t)) = Sn+1 (t)

= Sn (t) + ST−1 {ψ × ST {q2Π + (1− p)wL (t)− (µ+ d2 + φ)S (t)}} ,
M (Qn (t)) = Qn+1 (t)

= Qn (t) + ST−1 {ψ × ST {pwL (t) + φS (t)− (µ+ d3 + ρ)Q (t)}} . (21)
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Then, the iteration is M -stable in L1 (a, b) if

1− (ε+ µ) f (γ)− ξ (b+ e) g (γ)− α (c+ e)h (γ)− β (q + e) i (γ) < 1,

1 + εj (γ) + ξ (a+ o) l (γ) + α (a+ r)m (γ)

+β (a+ s)n (γ) + ρk (γ)− (µ+ d1 + w) v (γ) < 1,

1 + (1− p)wf1 (γ)− (µ+ d2 + φ) f2 (γ) < 1,

1 + pwf3 (γ) + φf4 (γ)− (µ+ d2 + φ) f4 (γ) < 1,

where f, g, h, i, j, l,m, n, v, k, f1, f2, f3, f4, f5 are functions ST−1 {ψST}.

Proof. First of all, we demonstrate that W has a fixed point. For this purpose, we
consider the followings for all (n,m) ∈ N× N.

M (Pn (t))−M (Pm (t)) = Pn (t)− Pm (t)

+ST−1

{
ψ × ST

{
Λ + (1− q1 − q2) Π− εPn (t)− ξPn (t)Ln (t)
−αPn (t)Sn (t)− βPn (t)Qn (t)− µPn (t)

}}
−ST−1

{
ψ × ST

{
Λ + (1− q1 − q2) Π− εPm (t)− ξPm (t)Lm (t)
−αPm (t)Sm (t)− βPm (t)Qm (t)− µPm (t)

}}
. (22)

Applying norm, the Eq. (22) is converted to

‖M (Pn (t))−M (Pm (t))‖ = ‖Pn (t)− Pm (t)

+ST−1

{
ψ × ST

{
Λ + (1− q1 − q2) Π− εPn (t)− ξPn (t)Ln (t)
−αPn (t)Sn (t)− βPn (t)Qn (t)− µPn (t)

}}
+ST−1

{
ψ × ST

{
Λ + (1− q1 − q2) Π− εPm (t)− ξPm (t)Lm (t)
−αPm (t)Sm (t)− βPm (t)Qm (t)− µPm (t)

}}∥∥∥∥ .
(23)

Using norm properties, we get

‖M (Pn (t))−M (Pm (t))‖
≤ ‖Pn (t)− Pm (t)‖+

∥∥ST−1 {ψ × ST {(−ε− µ) (Pn (t)− Pm (t))

−ξ (Ln (t) (Pn (t)− Pm (t)) + Pm (t) (Ln (t)− Lm (t)))

−α (Sn (t) (Pn (t)− Pm (t)) + Pm (t) (Sn (t)− Sm (t)))

−β (Qn (t) (Pn (t)− Pm (t)) + Pm (t) (Qn (t)−Qm (t)))}}‖ . (24)

The above can be transformed as follows:

‖M (Pn (t))−M (Pm (t))‖ ≤ ‖Pn (t)− Pm (t)‖
+ST−1 {Ψ× ST {‖− (ε+ µ) (Pn (t)− Pm (t))‖}}
+ST−1 {Ψ× ST {‖−ξ (Ln (t) (Pn (t)− Pm (t)) + Pm (t) (Ln (t)− Lm (t)))‖}}
+ST−1 {Ψ× ST {‖−α (Sn (t) (Pn (t)− Pm (t)) + Pm (t) (Sn (t)− Sm (t)))‖}}
+ST−1 {Ψ× ST {‖−β (Qn (t) (Pn (t)− Pm (t)) + Pm (t) (Qn (t)−Qm (t)))‖}} . (25)

Because the solutions play the same role, we assume that

‖Pn (t)− Pm (t)‖ ∼= ‖Ln (t)− Lm (t)‖ ,
‖Pn (t)− Pm (t)‖ ∼= ‖Sn (t)− Sm (t)‖ ,
‖Pn (t)− Pm (t)‖ ∼= ‖Qn (t)−Qm (t)‖ .
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Writing these in Eq. (25), we have

‖M (Pn (t))−M (Pm (t))‖ ≤ ‖Pn (t)− Pm (t)‖
+ST−1 {Ψ× ST {‖− (ε+ µ) (Pn (t)− Pm (t))‖}}
+ST−1 {Ψ× ST {‖−ξ (Ln (t) (Pn (t)− Pm (t)) + Pm (t) (Pn (t)− Pm (t)))‖}}
+ST−1 {Ψ× ST {‖−α (Sn (t) (Pn (t)− Pm (t)) + Pm (t) (Pn (t)− Pm (t)))‖}}
+ST−1 {Ψ× ST {‖−β (Qn (t) (Pn (t)− Pm (t)) + Pm (t) (Pn (t)− Pm (t)))‖}} .

(26)

Because Pn (t), Ln (t), Sn (t) and Qn (t) are bounded functions, we can find
distinct constants a, b, c, e, o, r, s, q such that

‖Pn (t)‖ ≤ a, ‖Pm (t)‖ ≤ e,
‖Ln (t)‖ ≤ b, ‖Lm (t)‖ ≤ o,
‖Sn (t)‖ ≤ c, ‖Sm (t)‖ ≤ r,
‖Qn (t)‖ ≤ q, ‖Qm (t)‖ ≤ s. (27)

Here thinking the Eqs. (26) and (27), we obtain

‖M (Pn (t))−M (Pm (t))‖ ≤ ‖Pn (t)− Pm (t)‖

×
{

1− (ε+ µ) f (γ)− ξ (b+ e) g (γ)
−α (c+ e)h (γ)− β (q + e) i (γ)

}
, (28)

where f, g, h, i are functions from ST−1 {ψST}. By the similar way, we have

‖M (Ln (t))−M (Lm (t))‖ ≤ ‖Ln (t)− Lm (t)‖

×
{

1 + εj (γ) + ξ (a+ o) l (γ) + α (a+ r)m (γ)
+β (a+ s)n (γ)− (µ+ d1 + w) v (γ)

}
,

‖M (Sn (t))−M (Sm (t))‖ ≤ ‖Sn (t)− Sm (t)‖
×
{

1 + (1− p)wf1 (γ)− (µ+ d2 + φ) f2 (γ)
}
,

and

‖M (Qn (t))−M (Qm (t))‖ ≤ ‖Qn (t)−Qm (t)‖
×
{

1 + pwf3 (γ) + φf4 (γ)− (µ+ d2 + φ) f5 (γ)
}
,

for {
1− (ε+ µ) f (γ)− ξ (b+ e) g (γ)
−α (c+ e)h (γ)− β (q + e) i (γ)

}
< 1,{

1 + εj (γ) + ξ (a+ o) l (γ) + α (a+ r)m (γ)

+β (a+ s)n (γ) + ρk (γ)− (µ+ d1 + w) v (γ)

}
< 1,

1 + (1− p)wf1 (γ)− (µ+ d2 + φ) f2 (γ) < 1,

1 + pwf3 (γ) + φf4 (γ)− (µ+ d2 + φ) f5 (γ) < 1.

(29)
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Then the nonlinear M -self mapping has a fixed point. Let

k = (0, 0, 0, 0) ,

K =



1− (ε+ µ) f (γ)− ξ (b+ e) g (γ)
−α (c+ e)h (γ)− β (q + e) i (γ) ,

1 + εj (γ) + ξ (a+ o) l (γ) + α (a+ r)m (γ)

+β (a+ s)n (γ) + ρk (γ)− (µ+ d1 + w) v (γ) ,

1 + (1− p)wf1 (γ)− (µ+ d2 + φ) f2 (γ) ,

1 + pwf3 (γ) + φf4 (γ)− (µ+ d2 + φ) f4 (γ) .


.

(30)

Using the Eqs. (28), (29) and (30), M satisfies the conditions in Theorem 5.1.
Then M is Picard M -stable.

6. Numerical results. In this part, some numerical simulations for the studied
drinking model (5) are presented to show how fractional order η affects the com-
ponents behavior of the fractional model. For this purpose, a numerical schemes
based on the method given by Toufik and Atangana [32] is handled. We choose the
parameters Λ = 0.12, q1 = 0.4, q2 = 0.3, Π = 0.3, ε = 0.1, ξ = 0.6, α = 0.3, β = 0.2,
µ = 0.1595, p = 0.3, ρ = 0.8, d1 = 0.02, w = 0.583, d2 = 0.038, φ = 0.226, d3 = 0.03
and the initial conditions P (0) = 1.3, L (0) = 0.8, S (0) = 0.52, Q (0) = 0.11 as
seen Fig. 4 in [35]. The numerical simulations of the special solutions respect to the
model (5) for different values of η are performed by Matlab software. One can see
from the Figs. 2-5, as fractional order η increases, the number of light, moderate
and heavy alcoholics decreases compared to the integer model components in [35].
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Figure 2. System behavior of the fractional drinking model (5)
with order η = 0.3 in respect to time t = 1 and t = 40.

7. Conclusions. Nowadays, alcohol consumption has been observed as one of the
critical problems which affect personal health and lead to a wide range of negative
social effects. For this reason, many researchers in various disciplines have been
studied mathematical model of the alcohol consumption. In our work, firstly, we
extend one of the drinking model (5) by using Atangana-Baleanu (AB) fractional
derivative. Then, we prove that the solutions of this extended model is unique
by using Banach fixed point postulate and derive special solution with the help of
Sumudu transform. Additionally, we confirm stability analysis via the Picard W -
stable approach. Finally, the numerical simulations in the Figs. 2-5 show that the
number of light, medium and heavy drinkers decreases according to the integer-order
model components in [35] as the fractional order η increase. We believe that our
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Figure 3. System behavior of the fractional drinking model (5)
with order η = 0.5 in respect to time t = 1 and t = 40.

Figure 4. System behavior of the fractional drinking model (5)
with order η = 0.7 in respect to time t = 1 and t = 40.

Figure 5. System behavior of the fractional drinking model (5)
with order η = 0.9 in respect to time t = 1 and t = 40.

results are very helpful in the description of drinking matter in biological, medical
and social processes.
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[7] H. Bulut, D. Kumar, J. Singh, R. Swroop and H. M. Baskonus, Analytic study for a fractional
model of HIV infection of CD4+T lymphocyte cells, Mathematics in Natural Science, 2

(2018), 33–43.

[8] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,
Math. Biosci. Eng., 1 (2004), 361–404.

[9] M. A. Dokuyucu and E. Celik, Nonlinear diffusion for chemotaxis and birth-death process for

Keller-Segel model, New Trends Math. Sci., 4 (2016), 204-211.
[10] F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional

gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016),

75–83.
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[34] S. Uçar, E. Uçar, N. Özdemir and Z. Hammouch, Mathematical analysis and numerical simu-
lation for a smoking model with Atangana-Baleanu derivative, Chaos Solitons Fractals, 118

(2019), 300–306.

[35] H. Xiang, C.-C. Zhu and H.-F. Huo, Modelling the effect of immigration on drinking be-
haviour, J. Biol. Dyn., 11 (2017), 275–298.

[36] M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat
equations, Thermal Science, 22 (2018), 185–194.

Received April 2019; 1st revision July 2019; final revision November 2020.

E-mail address: fevirgen@balikesir.edu.tr

E-mail address: sumeyraucar@balikesir.edu.tr

E-mail address: nozdemir@balikesir.edu.tr

E-mail address: hammouch zakia@tdmu.edu.vn

http://www.ams.org/mathscinet-getitem?mr=MR3799676&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2018.02.006
http://dx.doi.org/10.1016/j.nonrwa.2018.02.006
http://www.ams.org/mathscinet-getitem?mr=MR3703984&return=pdf
http://dx.doi.org/10.1016/j.amc.2017.08.048
http://dx.doi.org/10.1016/j.amc.2017.08.048
http://dx.doi.org/10.22436/mns.01.01.03
http://dx.doi.org/10.22436/mns.01.01.03
http://dx.doi.org/10.3390/fractalfract2030022
http://dx.doi.org/10.3390/fractalfract2030022
http://dx.doi.org/10.3390/fractalfract2030022
http://dx.doi.org/10.1140/epjp/i2017-11717-0
http://dx.doi.org/10.1140/epjp/i2017-11717-0
http://www.ams.org/mathscinet-getitem?mr=MR3928264&return=pdf
http://dx.doi.org/10.1051/mmnp/2019002
http://dx.doi.org/10.1051/mmnp/2019002
http://www.ams.org/mathscinet-getitem?mr=MR3885250&return=pdf
http://dx.doi.org/10.1016/j.chaos.2018.12.003
http://dx.doi.org/10.1016/j.chaos.2018.12.003
http://www.ams.org/mathscinet-getitem?mr=MR3733436&return=pdf
http://dx.doi.org/10.1080/17513758.2017.1337243
http://dx.doi.org/10.1080/17513758.2017.1337243
http://dx.doi.org/10.2298/TSCI170804285Y
http://dx.doi.org/10.2298/TSCI170804285Y
mailto:fevirgen@balikesir.edu.tr
mailto:sumeyraucar@balikesir.edu.tr
mailto:nozdemir@balikesir.edu.tr
mailto:hammouch_zakia@tdmu.edu.vn

	1. Introduction
	2. Basic tools
	3. Existence of solutions by means of Picard-Lindelof method
	4. Derivation of special solution with iterative method
	5. Stability analysis of iteration method using fixed point theory
	6. Numerical results
	7. Conclusions
	REFERENCES

