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ABSTRACT

Due to climatological changes, a study was conducted in the Gediz Basin, Turkey, where agricultural production holds an important place. In

the study prepared, 12 general circulation models (GCMs) were utilized under representative concentration pathway (RCP)4.5, RCP6.0, and

RCP8.5 scenarios of the fifth assessment report (AR5) of IPCC for the period 2015–2050. The statistical downscaling methods were employed

and the projections were derived right after applying the weighted-averaged ensemble mean by the Bayesian Model Averaging (BMA) method

and bias correction by equidistant quantile mapping (EDQM). The temperature-based potential evapotranspiration (PET) formulas were modi-

fied in accordance with the Penman–Monteith method and the aridity indexes were calculated by UNEP’s formula. According to the

projections, the mean annual temperature increases between 1.5 and 2.2 °C and the mean total annual PET increases between 5 and 8%

are foreseen in the Gediz Basin for the near future. It is foreseen that a semi-arid climate regime may predominate over the region for all

of the RCP scenarios under the increasing dryness in basin climate. In addition, it was obtained in the study that sub-humid climate state

occurrence for all of the regions included by the basin may be unexpected in the future for the RCP8.5 scenario. The presence of semi-

arid climate conditions may be more potent with the increasing trend of radiative forcing over time.
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HIGHLIGHTS

• Artificial intelligence methods were performed for downscaling.

• A multi-model ensemble strategy was carried out for climate projection.

• A robust bias-correction method was utilized.

• Climate change forecasts were integrated with aridity concepts.

• Spatio-temporal aridity changes were presented for the future term.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Earth’s climate is reacting to human activities conspicuously and becoming the world’s most important issue to be dealt with
by all countries. Climate patterns are changing day by day as a consequence of anthropogenic effects which originated from
energy requirements in particular. These requirements cause greenhouse gas (GHG) emissions, hence the temperature has

increasing trends in various parts of the Earth (IPCC 2013).
It is important to monitor climate change so that the relevant authorities may take measures against natural hazards such as

droughts, floods, and tornados which are induced by unbalanced climatological shifts. One of them, droughts, can be defined
as a normal climatological event that can occur in every type of climate regime; however, it can be more severe in arid regions

(Smakhtin & Schipper 2008). In the literature, those ideas can sometimes intermingle with one another, drought and aridity.
Drought is considered as a notion of temporary events, which is why it is called a natural hazard but undergone more slowly
than others, whereas aridity is a long-term climate condition that generally specifies the climate state of a region. Hence, arid-

ity is significant within the scope of climate change (Maliva & Missimer 2012).
The aridity can be indexed by means of several methods which are mainly the functions of precipitation (P), temperature

(T ), and temperature-related potential evapotranspiration (PET). In the related literature, it is possible to encounter many

downscaling implementations relevant to P and T variables. However, the number of studies concentrating on the derivation
of the aridity indices from the downscaled P and T projections is rather limited (e.g, Yin et al. 2015; Dascălu et al. 2016; Lin
et al. 2018). Moreover, several studies about the determination of aridity index (AI) and evaluation within the scope of cli-

mate change are as follows. For instance, Marengo & Bernasconi (2015) prepared a study of climate change projections
over Brazil and tried to predict the AIs until 2100 by means of a regional model integrated with the HadCM3 climate
model under the A1B emission scenario. The AIs proposed by Budyko (1958) and the United Nations of Environmental Pro-
gramme (UNEP) (1992) were used in their study to determine the historical and future aridity of Brazil. They estimated

negative effects in terms of meteorological variables and did not detect any significant difference between the indexes
until 2071. Nastos et al. (2013) made a projection study in Greece by means of eight regional climate models (RCMs) run
under SRES A1B. They weighted the climate models with regard to their performances and obtained an ensemble model.

They also utilized interrelated AIs, which were UNESCO (1979) and UNEP (1992), and found drier spells that may take
place in the future for both of them. In addition to the above-mentioned studies prepared under the CMIP3 data set, there
are projections derived under the CMIP5 data set. For instance, Scheff & Frierson (2015) used 16 general circulation
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models (GCMs) employed under the RCP8.5 scenario and the ratio of P and PET to obtain the AI for the regions of America,

India, and South Africa. They used the Penman–Monteith (PM) method to calculate PET and provided information about a
possible expansion of aridity in the future. Fernandez et al. (2017) used the Koppen–Trewartha climate classification method
to label possible climate regimes in the future and vegetation cover as well. They utilized an ensemble mean of four RCMs

under RCP8.5 and found aridification signals over South America.
In fact, any aridity projection work under RCP scenarios has not been exercised for the basin of Turkey. This is one of the

outstanding aspects of the study. Another novel aspect is the development of a temperature-based PET approach that simu-
lates the PM predictions, and thus converting the RCP scenario-based T projections into PET and aridity projections. In this

study, it is desired to investigate possible future AIs over the Gediz Basin, an important basin where agriculture has the biggest
allocation in the production sector. The up-to-date climate models derived under IPCC’s fifth assessment report, AR5, were
taken into account. Three scenarios related to future GHG stabilization named as representative concentration pathways

(RCPs) were utilized. Twelve GCMs under two mid-stabilization scenarios RCP4.5, RCP6.0, and a high-stabilization scenario
RCP8.5 were employed. A novel methodological strategy was applied by means of downscaling/multi-model ensemble/bias-
correction strategy which will be discussed in the Methodology section and the projections were obtained for the period

2015–2050. Projections that were prepared for this study have three processes: (a) downscaling of precipitation and tempera-
ture, (b) calculation of PET, and (c) estimation of AI for the term 2015–2050. The proposed methodological strategy is thought
to provide a practical way for researchers interested in the subject. In the remaining part of the paper, the results which were

achieved under different RCP scenarios were evaluated and finally, a conclusion with a thorough discussion about the study
area is given.

2. STUDY AREA AND DATA

The study area is the Gediz Basin which is located in the western part of Turkey. The Gediz Basin is named after the Gediz
River with a 401-km long river reach and a drainage area of 17,125 km2. The river rises from Murat Mountain of the Kutahya

region in the east and flows into the Aegean Sea in the west. The study area has a typical Mediterranean climate. Most of the
population existing in the basin lives off the agricultural sector. Agricultural productions are made in irrigated fields with an
area of 110,000 ha which extends from south to west of the basin. In the study, the data of 20 meteorological stations which

observe both P and T were utilized for the time period between January 1980 and December 2005, and the data archive is
provided by the Turkish Meteorological Service (TMS) (Table 1, Figure 1). According to the data, the mean areal P is
observed as 550 mm per year, and the mean annual T is observed as 13 °C.

In the climate change studies, the reanalysis data which represent the atmospheric, oceanic, and land surface state of the

past time are utilized frequently (Tuel et al. 2020; Krikken et al. 2021). In this work, ERA-Interim reanalysis data were used so
as to determine predictor variables of the Gediz Basin T and utilized as inputs in downscaling applications. The reanalysis
data set covers the Gediz Basin between 37.875°–39.375 °N latitudes and 26.625°–29.625 °E longitudes with the resolution

of 0.75° in both axes. The selected time period of the reanalysis data is the same as P and T data obtained from the TMS.
In this study, the climate scenarios referred to in IPCC’s AR5 were taken into account. In AR5, RCPs in which the radiative

forcing forecasts are made for the 21st century and after are constituted by means of different emission scenarios. In the work,

the mid-stabilization pathways RCP4.5 and RCP6.0 and a high-stabilization pathway RCP8.5 scenarios were taken into con-
sideration for this study. The optimistic scenario RCP2.6 where it is foreseen to have a radiative force of 2.6 W/m2 by the end
of 2100 was not evaluated because it is desired to seek the climate in the conditions of increasing radiative forcing and GHG

emissions. The Coupled Model of Intercomparison Phase 5 (CMIP5) data set of 12 GCMs was utilized for the related RCP
scenarios. Though more than 30 GCMs were present in the CMIP5 archive, some GCMs were eliminated through minding
the compatibility between the variables in ERA-Interim and GCM data sets. Anandhi et al. (2008) and Okkan & Inan (2015)
recommended the usage of Kendall’s Tau non-parametric rank correlation statistics to detect the relationship between reana-

lysis predictors and historical scenario results of GCMs and expressed that this statistic has expediencies comparable with
other indices. In the study, the GCMs, in which the rank correlation statistics were less than or equal to 0.3, were ruled
out and as a result, it was decided to utilize 12 GCMs that were also listed in Okkan & Kirdemir (2016). The computational

details about the GCM-based rank indicators were not given in the paper due to the limitation of word number. Although it
was possible to access the data of the whole of the 21st century, the projection period was decided as the years between 2015
and 2050 such that it was considered that predictions are less uncertain for the near future. Moreover, in addition to data of
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RCP scenarios, historical period data were utilized as the reference scenario (REF) which represents past climate over the
region. The reason for the reference period for all of GCMs is commonly provided as in between 1980 and 2005, the
same time period was chosen for both ERA-Interim reanalysis and observed TMS data. In GCMs, the atmospheric variables

at different atmospheric levels are selected the same as those of the ERA-Interim reanalysis data set so that selected predictors
via reanalysis data could be used analogously at the stage of downscaling GCMs. The related atmospheric variables that exist
in both reanalysis data and GCMs are monthly mean air temperature (air), sea level pressure (slp), large-scale precipitation

(pr) at surface level, mean air temperature, and geopotential height at atmospheric levels of 200, 500, and 850 hPa (air200,
air500, air850, hgt200, hgt500, hgt850) and relative humidity at atmospheric levels of 500 and 850 hPa (rhum500, rhum850).

The purpose of the study is to determine the AIs of the Gediz Basin in the future. The methodology set up for this purpose

requires projection of the P for the related time period and these data were extracted from Okkan & Kirdemir (2016) (here-
inafter referred to as OK16). In OK16, the projection of P over the Gediz Basin was derived for RCP4.5, RCP6.0, and RCP8.5
scenarios. The information about precipation projections prepared over the Gediz Basin will be given in the Results section.

Moreover, the details of GCMs used in this study are given in Table 2.

3. METHODOLOGY

3.1. Downscaling of GCM data

GCMs that are relatively coarse in terms of resolution are not efficient to capture the meteorological effects of climate change

on the regional scale. For this reason, high-resolution results are needed to interpret the effect of coarse-resolution atmos-
pheric models on the regional scale. Due to this requirement, it is possible to achieve a data set that more reliably
represents the climatic characteristics of the study area by downscaling the coarse-resolution GCM data to the local scale

using the downscaling method.
Statistical downscaling methods based on the approach of developing quantitative relations between large atmospheric

variables and variables measured at the regional scale are regarded as more user-friendly tools. Besides, in a study conducted

Table 1 | Meteorological stations used in the study with their spatial information

Station name Station no. Altitude (m) Latitude (°) N Longitude (°) E

Akhisar 17184 93 38.917 27.817

Alasehir 5974 189 38.350 28.517

Demirci 17746 851 39.050 28.650

Foca 5434 10 38.667 26.750

Gediz 17750 825 39.050 29.417

Golmarmara 5273 150 38.717 27.917

Gordes 4930 550 38.933 28.300

Gure 5458 650 38.650 29.167

Koprubasi 5278 250 38.750 28.400

Kula 5624 675 38.550 28.650

Manisa 17186 71 38.617 27.433

Menemen TS 9020 10 38.600 27.067

Salihli 17792 111 38.483 28.133

Sarigol 6143 225 38.250 28.700

Saruhanli 5269 50 38.733 27.567

Selendi 5282 575 38.750 28.867

Turgutlu 5615 120 38.500 27.700

Usak 17188 919 38.671 29.404

Simav 17748 809 39.093 28.979

Kemalpasa 5785 200 38.433 27.417
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in New Zealand by Le Roux et al. (2018), statistical and dynamical downscaling models were compared and it was more logi-
cal to use statistical downscaling models as it demanded less computational effort although both models had close results to

each other. As a consequence of these reasons, statistical downscaling methods were preferred to dynamical downscaling
methods for the projections in this study. However, it should be noted that a qualified statistical downscaling model requires
that various assumptions are met. These assumptions, which were earlier pointed out by Schoof (2013), can be briefly listed as

follows:

• There is a robust relationship between the predictors and the predictand (i.e., the variable being downscaled).

• The predictors are sufficiently simulated by the GCMs.

• The predictors incorporate the signals pertaining to climatic change.

• The relationship between the predictors and predictand shows stationary behavior.

The readers can look through the study of Schoof (2013) for the caveats of statistical downscaling methods and the detailed
explanations about the assumptions listed above.

Artificial neural networks (ANN) and least squares support vector machines (LSSVM) methods were used for statistical

downscaling to derive T projections. P projections were already obtained from OK16, in which P was statistically downscaled
with a multi-model ensembling strategy, hence, how to get T projections will be elucidated in this study. In both downscaling
methods, reanalysis variables were introduced as model inputs so that coarse-resolution GCM outputs could be downscaled

to a regional scale. During the application of the downscaling models, it is aimed to define predictor sets representing the
observed T in the study area in order to reduce the computational cost (Fistikoglu & Okkan 2011). To apply this the all poss-
ible regressions (APREG) method was used and 12 ERA-Interim reanalysis variables as predictors and T observations of 20

Figure 1 | Location of the Gediz Basin and meteorological stations with digital elevation map.
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meteorological stations as predictands were utilized in the related method. As a result, it was deduced that it was sufficient to

use the air variable (surface temperature) of the reanalysis data as the T predictor of the stations. As with this study, only the
precipitation rate (prate) variable was selected as a potential predictor of P in OK16 so it can be evaluated that prate and air
variables of the ERA-Interim data set are prominent in representing P and T for the Gediz Basin.

Performance of downscaling models was evaluated by means of statistical performance criteria such as determination coef-

ficient (R2), RMSE, RSR which is the proportion of RMSE to standard deviation of observed data, and percent of bias
(PBIAS) which is the metric of overestimation or underestimation. The theoretical knowledge about the related performance
criteria is detailed in Moriasi et al. (2007).

3.2. Multi-model ensemble and bias-correction strategy

When the climate models are taken into consideration, it can be stated that they have effective roles in projecting the future
climate. Even if they are practical tools for climate scientists, uncertainty still exists about the extent to which a single climate
model can represent the climate of the related region. Regarding this issue, it was recommended by IPCC (2010) that a com-

bination of multiple GCM results can be applied in climate projection studies by averaging or weighting the model
predictions. Besides, Kwon et al. (2010) compared several ensemble results of T projections over East Asia and they achieved
more feasible and explanatory results with a weighted ensemble model which were obtained by using Bayesian Model Aver-

aging (BMA). Moreover, Yang et al. (2012) prepared a study for Tibetan Plateau and evaluated BMA and arithmetic mean
method (equally weighted) for multi-model ensemble projections and they obtained more consistent results with BMA in
comparison with the arithmetic mean method. Similarly, better performing results obtained by utilizing BMA were presented

Table 2 | The information of utilized GCMs

GCM name Institution Modeling center
Resolution Latitude
(°) �Longitude (°)

Center coordinates of used grids
that cover the study area

BCC-CSM1 Beijing Climate Center, China
Meteorological
Administration, China

BCC 1.121� 1.125 [38.69 °N,
27 °E];

[38.69 °N, 28.125 °E]; [38.69 °N,
29.25 °E]

CCSM4 National Center for Atmospheric
Research, USA

NCAR 0.942� 1.25 [38.17 °N,
27.5 °E];

[38.17 °N, 28.75 °E]; [39.11 °N,
28.75 °E]; [39.11 °N, 27.5 °E]

CESM1
(CAM5)

National Center for Atmospheric
Research, USA

NCAR 0.942� 1.25 [38.17 °N,
27.5°E];

[38.17 °N, 28.75 °E]; [39.11°N,
28.75 °E]; [39.11 °N, 27.5 °E]

CSIRO-
Mk3.6

Commonwealth Scientific and
Industrial Research
Organisation, Australia

CSIRO-
QCCCE

1.865� 1.875 [38.24 °N,
26.25°E];

[38.24 °N, 28.125 °E]; [38.24 °N,
30 °E]

GFDL-CM3 Geophysical Fluid Dynamics
Laboratory, USA

NOAAGFDL 2� 2.5 [39 °N,
26.25°E];

[39 °N, 28.75 °E]

GFDL-
ESM2M

Geophysical Fluid Dynamics
Laboratory, USA

NOAAGFDL 2.022� 2.5 [37.416 °N,
26.25°E];

[37.416 °N, 28.75 °E]; [39.438 °
N, 28.75 °E] [39.438 °N,
26.25 °E]

GISS-E2-H NASA Goddard Institute for
Space Studies, USA

NASA GISS 2� 2.5 [39 °N,
26.25 °E];

[39 °N, 28.75 °E]

GISS-E2-R NASA Goddard Institute for
Space Studies, USA

NASA GISS 2� 2.5 [39 °N,
26.25°E];

[39 °N, 28.75 °E]

HadGEM2-
ES

Met Office Hadley Centre, UK MOHC 1.25� 1.875 [38.75 °N,
26.25 °E]:

[38.75 °N, 28.125 °E]; [38.75 °N,
30 °E]

IPSL-CM5A-
LR

Institut Pierre-Sim on Laplace,
France

IPSL 1.895� 3.75 [38.842 °N,
26.25 °E];

[38.842 °N, 30 °E]

MROC-ESM Atmosphere and Ocean
Research Institute, Japan

MIROC 2.791� 2.813 [37.673 °N,
28.125 °E]

MRI-CGCM3 Meteorological Research
Institute, Japan

MRI 1.12� 1.125 [38.69 °N,
27 °E];

[38.69 °N, 28.125 °E]; [38.69 °N,
29.25 °E]
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in Min et al. (2007) and Miao et al. (2013), in which BMA-weighted and equally weighted results were compared. Moreover,

OK16 employed BMA for P projections over the Gediz Basin and derived simulations with higher significance levels than
those of individual models. In the light of this information, the use of the BMA method was decided by the authors for T
projections in the study.

Raftery et al. (2005) proposed BMA to reduce uncertainty in model selection by combining multi-model forecasts. The
model depends on a weighting of the probability density function (PDF) of each individual model forecast; subsequently,
the weighted-average forecast PDFs can be derived. In the model, the PDF of a combined forecast y is defined depending
on the observed data with data size T (D¼ [yobs1, ……., yobsT]) and K-model forecasts ( fk) as follows:

p(yjD) ¼
XK
k¼1

p(fkjD)�pk(yjfk, D) (1)

where p( fk|D) is the posterior probability of kth model forecast for given observed data and defined as a weight of the kth
model (wk). The sum of the related model weights adds up to 1. The conditional PDF pk(y|fk, D) is assumed to be normally
distributed and centered at the linear regression function of akþ bk.fk whose response variables are the observed ones. The

expected value of BMA forecasts is given in Equation (2).

E[yjD] ¼
XK
k¼1

p( fkjD) � E[pk(yjfk, D)] ¼
XK
k¼1

wk � fk (2)

Raftery et al. (2005) recommended maximization of the log-likelihood function as an objective function to define the par-
ameters which are weights (wk) and variances of model forecasts (σk

2). The log-likelihood function is

l(u) ¼ l(w1, . . . , wk; s1, . . . , sk) ¼ log [
XK
k¼1

wk:g(yjfk, sk)] (3)

where g(y|fk, σk) is the conditional PDF of y for given model forecasts and predicted variance. The term g(y|fk, σk) is similar to
pk(y|fk, D) such that it is normally distributed as N(akþ bk.fk, σk). For calculation convenience of log-likelihood maximization,
the expactation–maximization (EM) procedure is employed. For a detailed explanation of BMA and EM, readers are referred
to Raftery et al. (2005).

Undoubtedly, the forecasts obtained after weighting the results of GCMs (either coarse or downscaled) cannot be comple-
tely trusted. But yet, according to Murphy et al. (2004) and Chen et al. (2017), assigning weights, and thus reducing the
influence of some GCMs which do not perform as well as others, can help diminish the uncertainties stemmed from project-

ing stages. In connection with this issue, Smith & Chandler (2010) and Whetton et al. (2007) expressed that a model’s facility
to reflect past climates could be an essential criterion for simulating future climates. In this respect, weighting the individual
models with respect to REF is an appropriate strategy for scenario period simulations.

The GCMs which are utilized in the study differ from each other with regard to the capability of forecasting the climate for
different time periods. For example, one can be better at predicting hot seasons whereas the other can be better at predicting
cold seasons. Hence, observed T data and downscaled REF data were divided into dry (from April to September) and wet

(from October to March) periods. Thus, 12 weights belonging to 12 GCMs for each separate period were obtained in each
ensemble projection of the related meteorological station. The determined weights were integrated with three RCP scenarios
separately. Moreover, it is possible to interpret the prediction capabilities of GCMs after the determination of GCM weights,
that is, better performing GCMs get higher weights in comparison to the other GCMs. Thus, probabilistic performances of

climate models used in the study were evaluated and presented in the Results section.
There is another problem in the use of GCMs in that these models have inherent biases. Li et al. (2010) stated in their study

that the complicated structure of the atmosphere system and converting it to a more simplified model entail GCM biases.

Although the climate models have been improved in the AR5 since the AR4, according to IPCC (2013), biases in T and P
still exist in certain climate models. Moreover, statistical downscaling models such as ANN and LSSVM have the only
aim that is to calibrate the related downscaling model parameters to minimize the error value. These models do not
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reckon with the reference climate properties and inherent biases of GCMs are not corrected consequently. Hence, a bias-cor-

rection procedure was applied for all downscaled and ensemble projections to derive physically and climatologically plausible
simulations.

To apply the bias-correction procedure, the equidistant quantile mapping (EDQM) method which reckons cumulative dis-

tribution functions (CDFs) of data to reduce the bias values resulting from simulations. The EDQM method takes into
account two factors in addition to the uncorrected projected model value to get the corrected one as follows:

Ycorr,i ¼ Yscn,i þ Factor1 � Factor2 (4)

where Ycorr,i is the bias-corrected value of the corresponding variable on the ith month for the related scenario, Yscn,i is the
uncorrected value of the corresponding variable on the ith month for the related scenario (scn). The Factor1 and Factor2 are
calculated as

Factor1 ¼ F�1(F(Yscn,i, uscn,i), uobserved,i) (5)

Factor2 ¼ F�1(F(Yscn,i, uscn,i), uhistorical,i) (6)

where CDF of each scenario value for the related month with respect to distributional function and parameters are obtained
in both factors. EDQM is sharply separated from the quantile mapping (QM) method with this property, such that EDQM
reckons with distributional parameters of both historical and future scenarios whereas QM takes into account the CDFs
only with respect to the distribution of historical scenario and maps onto the observed one. The CDFs of each simulation

on the related month are calculated by using PDF as follows:

F(Yscn,i; uscn,i) ¼
ðYscn,i

�1
f(x; uscn,i)dx (7)

where f(x;θscn,i) is the PDF of a corresponding meteorological variable for given distribution parameters. Also, F�1(.) rep-
resents the inverse CDF and θhistorical,i and θobserved,i denotes the value of the distribution parameters of a corresponding
meteorological variable for the historical scenario and observed data, respectively.

The above-mentioned corresponding meteorological variable is T for this study. The bias-corrected time series of P was
already obtained from OK16. The EDQM method requires fitting distribution functions for the time series, hence, the prob-
ability plot-correlation coefficient (PPCC) tests were applied to observe and downscaled T time series. As a result of the PPCC

tests, it was determined that T time series were fitted to a normal distribution, so the distribution parameters were mean and
standard deviation for this application. For the sake of brevity, the results of the PPCC tests will not be given in the study.

3.3. Simulation of PET and AI

In the literature, there are several methods used for determination of the AI. Most of them determine the AI by using P, PET,
or T data. One of them is the P and T data user Köppen and Trewartha climate classification method which is used for the
definition of climate regime and prevalent vegetation type related to the climatic conditions. Another method is De Mar-

tonne’s AI method in which AI is calculated with a proportion of mean annual P to mean annual T plus 10 °C. The
difference between mean annual PET and mean annual P over mean annual P is defined as Thornthwaite AI. Similarly,
UNESCO (1979) expressed AI as the proportion of mean annual P to mean annual PET, and the same proportion was pro-

posed by UNEP (1992). The difference between UNESCO (1979) and UNEP (1992) is the method of definition of PET. In
UNESCO (1979) PET is defined by using the standard Penman formula, while PET is defined by using Thornthwaite empiri-
cal equations in UNEP (1992). Different from those, AI is defined with mean annual net radiation, mean annual P, and latent
heat of evaporation by Budyko (1958). Upon examining the above-mentioned methods, they reflect correlative properties

(Paltineanu et al. 2007), hence, in the study, it was found adequate to use UNEP (1992) AI for the calculation of AI by

AI ¼ P
PET

(8)
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As mentioned above, PET is calculated by means of the Thornthwaite formula in UNEP (1992). However, in the literature,

the PM method is introduced as a standard PET calculation method such that it is considered as an indirect measurement of
PET besides lysimeter measurements. Although the PM method is taken into consideration as the standard reference method,
it can be unfeasible in certain regions due to the fact that PM requires a large amount of data. It demands data such as average

dew point temperature, several variants of radiation, pressure, and wind speed such that they are highly possible to be unmea-
sured in a region or it is not possible to obtain them as continuously measured. The lack of input data of PM is problematic for
the Gediz Basin, too, hence it was decided to extract ERA-Interim reanalysis data sets required for PET calculation by PM.
Okkan & Kiymaz (2019) already revealed that several input data of PM obtained from reanalysis data sets are compatible to

observed data in the Gediz Basin, thus, it is considered that reanalysis data sets have enough spatio-temporal reliability in
terms of compatibility to actual data of the Gediz Basin. In order to project PET in accordance with RCPs, the PM
method was simulated by calibrating coefficients of temperature-based Hamon (Ham), Blaney–Criddle (Bl–Cr), and

Thornthwaite (Thw) methods, and the performance of the best method was utilized for PET projections. The input of outper-
forming method is T projections derived under RCPs. Subsequently, AI and climatic regimes were defined for REF and
scenario period, separately. To give an example, similar coefficient adjustment practices were also implemented for radi-

ation-based PET methods such as Hargreaves and Priestley–Taylor equations as in Tabari & Talaee (2011). The climatic
regimes corresponding to AI intervals are listed in Table 3.

4. RESULTS

4.1. Possible changes in temperature

4.1.1. Statistical downscaling phase

In the study, the projection studies were initialized by downscaling coarse-resolution reanalysis and GCM data to a local
scale. Prior to the downscaling, the time series of potential predictor and local-scale temperature were divided into equal

time periods for training and testing the models. When the results of ANN and LSSVM were compared, it was realized
that the statistical performances of both models were close to each other in the training phase. Hence, the decision was
made about which downscaling model results to be used in terms of testing performances due to the fact that extrapolation
capabilities of models are prominent in climate studies (Table 4). Subsequent to the determination of related parameters of

better performing downscaling models, they were integrated with data of REF and RCP scenarios. Upon assessing the test
results of the models for each station, both ANN and LSSVM models show ‘very good’ testing results at downscaling T
for each station in terms of NS, RSR, and PBIAS (please check qualitative evaluations of performance criteria from Moriasi

et al. (2007)). In the decision phase of model selection, test results of better performing models were selected and utilized in
the next process.

4.1.2. Multi-model ensemble, bias correction, and ultimate results

In the downscaling application, the raw GCM data were integrated with calibrated and validated downscaling models which
were selected individually for each station and it was obtained that the statistical behavior of T series belonging to 12 GCMs

was different from each other. As stated before, this situation entails uncertainty in model selection and puts trouble in the
decision. Hence, the BMA method was utilized to produce weighted-average projections in which 12 GCMs were combined.

Table 3 | Climatic zones corresponding to AI

AI Climatic zone Acronym

,0.05 Hyper-Arid HA

0.05–0.20 Arid A

0.20–0.50 Semi-Arid SA

0.50–0.65 Dry Sub-Humid DSH

0.65–1.00 Sub-Humid SH

1.00–2.00 Humid H

.2.00 Hyper-Humid HH
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For each station, observed data and historical projections of 12 GCMs were utilized and the time series were divided into wet

and dry periods. In this process, each GCM had its own weight for wet and dry periods, respectively. In the end, the expected
values of multi-model ensembles for related wet and dry periods were derived and the long-term monthly time series were
reproduced by combining wet and dry periods. Same weights were used for RCP4.5, RCP6.0, and RCP8.5 scenarios, respect-

ively. The related weights are shown in Table 5 for each meteorological station. According to Table 4, BCC-CSM1.1 and
HADGEM2-ES climate models have the highest weight values for wet and dry periods, respectively. Due to the fact that
the better the model performs, the higher the weight value it gets, it can be interpreted that BCC-CSM1.1 and

HADGEM2-ES climate models have the highest capability of representing the local temperature over the Gediz Basin for
wet and dry periods, respectively.

Of course, in addition to BMA, the simple model averaging (SMA) method is also frequently used in climate change studies

in order to get GCM ensembles (Miao et al. 2013; Wang et al. 2018). In the study, Mann–Whitney U tests were utilized so that
a comparison could be made between BMA and SMA. Dibike et al. (2007) proposed the Mann–Whitney U test to perform
uncertainty analysis for GCMs in which it was investigated if the medians of REF time series of GCMs and observed time
series were statistically equal. In this study, a similar aspect was conformed for comparison of BMA and SMA ensemble

results. The non-parametric test analyses were done for monthly and annual time scales and the evaluations were made in
terms of quantity of confidence levels (1� p value). According to the confidence levels, it was realized that the BMA
method had dominance over both SMA and single GCMs for a major part of the time scales. However, in several months

(such as March and October for the Alasehir station) SMA had slightly better performance in comparison to BMA. Moreover,
in some months (such as March, April, and June for the Alasehir station) the single GCMs such as GFDL-ESM2M, MIROC-
ESM, Csiro-Mk3.6, and CCSM4 had higher levels than those of ensemble levels. Generally, it can be stated that the BMA

Table 4 | Testing performances of ANN and LSSVM as temperature downscaling models

Stations

ANN LSSVM Selected
downscaling
modeln.n.h R2 NS RSR PBIAS (%) γ σ R2 NS RSR PBIAS (%)

Akhisar 3 0.9931 0.9909 0.0948 1.82 2.29Eþ 05 0.80 0.9929 0.9905 0.0974 2.02 ANN

Alasehir 2 0.9899 0.9891 0.1040 1.19 2.32Eþ 05 3.18 0.9899 0.9892 0.1037 1.15 LSSVM

Demirci 4 0.9892 0.9887 0.1061 1.15 1.73Eþ 05 31.91 0.9896 0.9886 0.1062 1.69 ANN

Foca 6 0.9918 0.9902 0.0986 0.35 8.62Eþ 02 0.55 0.9921 0.9905 0.0970 0.31 LSSVM

Gediz 15 0.9913 0.9910 0.0945 0.92 1.35Eþ 06 23.85 0.9915 0.9911 0.0938 0.99 LSSVM

Golmarmar 3 0.9910 0.9908 0.0957 0.22 6.31Eþ 04 0.71 0.9928 0.9900 0.0995 2.10 ANN

Gordes 3 0.9905 0.9899 0.1002 0.35 3.86Eþ 02 2.73 0.9907 0.9903 0.0980 0.09 LSSVM

Gure 5 0.9887 0.9886 0.1065 � 0.15 6.50Eþ 07 49.21 0.9888 0.9888 0.1057 0.15 LSSVM

Kemalpasa 4 0.9926 0.9925 0.0863 � 0.25 6.93Eþ 02 0.54 0.9930 0.9925 0.0861 � 0.15 LSSVM

Koprubasi 3 0.9857 0.9852 0.1214 0.87 1.03Eþ 08 2.67 0.9857 0.9853 0.1210 0.78 LSSVM

Kula 6 0.9898 0.9892 0.1036 0.45 1.30Eþ 02 2.60 0.9900 0.9894 0.1028 0.66 LSSVM

Manisa 1 0.9930 0.9924 0.0868 0.02 8.26Eþ 02 0.55 0.9936 0.9927 0.0852 0.02 LSSVM

Menemen 6 0.9787 0.9629 0.1920 4.85 6.84Eþ 02 0.56 0.9786 0.9622 0.1939 4.96 ANN

Salihli 6 0.9930 0.9914 0.0924 1.23 4.28Eþ 05 3.59 0.9930 0.9912 0.0937 1.50 ANN

Sarigol 6 0.9931 0.9913 0.0927 1.42 1.31Eþ 04 2.48 0.9929 0.9912 0.0937 1.51 ANN

Saruhanli 3 0.9929 0.9910 0.0944 1.65 2.85Eþ 06 4.66 0.9933 0.9914 0.0927 1.77 LSSVM

Selendi 3 0.9932 0.9926 0.0860 � 0.08 3.30Eþ 02 0.62 0.9934 0.9928 0.0848 � 0.02 LSSVM

Simav 6 0.9919 0.9897 0.1013 2.57 4.74Eþ 06 5.27 0.9919 0.9894 0.1027 2.89 ANN

Turgutlu 3 0.9903 0.9894 0.1027 0.49 1.39Eþ 06 0.87 0.9906 0.9896 0.1017 0.50 LSSVM

Usak 4 0.9931 0.9930 0.0831 0.09 7.41Eþ 03 30.20 0.9932 0.9932 0.0824 0.26 LSSVM

Better performing results are underlined.

n.n.h., number of neurons in hidden layer; γ, regularization parameter; σ, RBF width.
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method had more confident results than those of SMA and single GCMs, hence it makes sense to use BMA ensembles in

further projections such as PET and AI. In Figure 2, the confidence levels obtained by Mann–Whitney U tests were presented
for the Alasehir station. Similar results were encountered in other stations as well. However, the decomposition of total
uncertainty in RCP-based projections was not addressed in the study. In other words, supposing that the projection is
made up of three stages applied (i.e., GCMs, emission scenarios, and downscaling models), it has not been identified how

uncertainties are propagated as the stages proceed in produced projections. The above-mentioned uncertainty analysis
used in the study was only performed for the REF, similar to that in Dibike et al. (2007).

Subsequent to a combination of 12 GCM results, the EDQM method was utilized to eliminate the model biases. As seen in

the sample of the Foca meteorological station, the uncorrected REF simulation has different statistics and frequency distri-
bution when compared to the observed time series (Figure 3(a) and 3(b)). In order to capture the climatological
conditions of the study area, the model biases were corrected and it was obtained that the corrected historical T series

were more compatible to the observed series (Figure 3(c)). Similar biased results were produced for other related meteorolo-
gical stations and the related bias-correction procedure were applied for all of them.

Upon evaluating the T projections for all meteorological stations, it is foreseen that mean annual T changes between þ1.26
and þ2.80 °C may occur over different regions of the Gediz Basin. The maximum mean annual T increases for all concen-

tration pathways are predicted in Salihli meteorological station as þ1.94, þ1.95, and þ2.80 °C for RCP4.5, RCP6.0, and
RCP8.5, respectively. When the possible spatial changes in T are evaluated over the Gediz Basin, it is obtained that the high-
est changes for all RCPs are expected in the southern part of the basin and this situation spreads to the mid-northern part of

the basin. In the eastern part of the basin, the expected temperature changes are around the calculated mean annual changes
for the entire basin (1.54, 1.60, and 2.18 °C for RCP4.5, RCP6.0, and RCP8.5, respectively). Upon evaluating the westward
change of T increase, especially in the central part of the basin, the related amount of expected increase diminishes gradually.

Table 5 | The weights of each GCM obtained for the meteorological stations

Maximum values are coloured for wet and dry periods separately.
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For the entire basin, the mean annual T which is about 15.1 °C in the REF is foreseen that it may increase to 16.7, 16.8, and
17.3 °C for RCP4.5, RCP6.0, and RCP8.5, respectively. In addition to an annual analysis of possible T changes, they were

assessed in terms of seasonal periods. According to this assessment, the highest increase is expected in the summer
season for all RCPs. The mean summer T which is about 25 °C in the reference period may increase by 1.87, 1.74, and
2.46 °C for RCP4.5, RCP6.0, and RCP8.5, respectively. In autumn seasons, the mean T of 15.9 °C may increase by 1.52,

1.62, and 2.44 °C for RCP4.5, RCP6.0, and RCP8.5, respectively. The mean spring T is expected to increase 1.44, 1.52, and
1.99 °C, and the mean winter Tmay increase 1.34, 1.52, 1.85 °C for RCP4.5, RCP6.0, and RCP8.5, respectively. In the seasonal
evaluation, it is realized that the temperature increase is directly proportional with respect to radiative forcing for the winter,
spring, and autumn seasons while the mean temperature of RCP4.5 is higher than the mean temperature of RCP6.0 for the

summer season. Similar predictions were experienced in the monthly evaluations of T projections as well. The maximum T
increase for both RCP6.0 and RCP8.5 is expected in October as 1.88 and 2.68 °C, respectively, but in August for RCP4.5 as
2.03 °C (Figure 4). In the study, hypothesis testing was made on whether the mean annual, seasonal and monthly T changes

are significant with respect to REF temperature of the related time periods. To do this, two sample t-tests were applied for the
mean values of the projected T series of annual, seasonal, and monthly time periods (the significance level is 0.05).

Figure 2 | Mann–Whitney U confidence levels of GCMs and ENSEMBLE results for monthly and annual time scales. In the bar charts, the
vertical axis stands for confidence levels (between 0 and 1) and horizontal axis stands for GCMs and ensemble models.
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Consequently, it was deduced that all possible changes are statistically significant with respect to historical T for annual, sea-
sonal and monthly time periods until 2050.

4.2. Possible changes in PET

Similar assessments for T projections were made for PET forecasts which were projected through T-based empirical equations

modified in accordance with the PM method. In order to handle the provision of input data demanded by the PM method,
ERA-Interim reanalysis data sets were utilized and PET estimations were obtained for the past period. In PET simulations, the
observed PM data were simulated by means of three different PET methods which relied on Ham, Thw, and Bl–Cr methods
such that they commonly use temperature data as input. Ham, Bl–Cr, and Thw-based PET equations were modified by adjust-

ing the coefficients of the formulas depending on PM estimations so that PET estimations were derived for RCP scenarios by
integrating T projections into adjusted T-based formulas. The formulas for simulation models are presented in Table 6. The
parameters in the related formulas were already optimized by the model developers, for instance, a, b, c, and d were 0.6915, 2,

0.062, and 0 for the original Ham method, respectively. However, it was thought that these parameters can deviate with
respect to the climate of the study region (see Xu & Singh 2001; Okkan & Kiymaz 2019), so the parameters for each
model were calibrated for each station in the Gediz Basin again. In this process, the data were divided into calibration

Figure 3 | (a) Time series of Foca meteorological station plotted for observed temperature, (b) downscaled but uncorrected historical
scenario temperature and (c) downscaled and corrected historical scenario temperature. The histograms at the upper-right corner of the
graphs show the frequency as percentile in the vertical axis and temperature in the horizontal axis with the distribution curves.
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and verification data with equal ratios, and the statistical performances were presented in accordance with time series con-
taining both calibration and verification predictions. The level of biases of the predictions derived from recalibrated equations
against the PM predictions was questioned by criteria such as R2, NS, and RSR, which were also assessed in the investigations

of downscaling model performances. It was found unnecessary to give the PBIAS results due to the fact that each model
derived PBIAS values close to zero. As a result of the calibrations carried out separately on 20 meteorological stations, it
is deduced that the predictions of the modified Ham equation adequately represent those of the reference method in

terms of several performance measures denoted in Table 6. Then, the T-based PET function consisting of these coefficients
mentioned in Table 6 was utilized to convert the downscaled T projections to PET values within the scope of RCP scenarios.
Additionally, the parameters of the Ham-based simulation method with calibration and verification performances for each

station are presented in Table 7.
According to the calculations made for the scenario period, there is no region in the Gediz Basin where the mean annual

and seasonal PET are expected to decrease. On the monthly basis, PET decreases are generally expected only in January,
February, and March in the major part of the basin. The minimum mean annual increases are foreseen in the Sarigol

region as 4.2% for both RCP4.5 and RCP6.0 and 5.6% for RCP8.5, while the maximum increases are expected in the Demirci
region, where relatively low PET was estimated in REF, as 7.4 and 10.2% for the related mid- and high-stabilization scenarios,
respectively. When the PET column of Figure 6 is evaluated, it can be seen that the minimum PET increases may occur in the

southern and western parts of the basin (Sarigol, Alasehir, Foca regions, and apart from these Simav region in the north).
Moreover, the related increasing rate is foreseen to be exacerbated northeastwardly. The maximum increases are expected
in the northern parts of the basin (Demirci and Gediz regions). As is the case with T projections, the PET changes were eval-

uated in terms of time periods for the entire basin. The mean total annual PET, which is 1,141.8 mm in REF, is expected to
increase 5.5, 5.6, and 7.7% for RCP4.5, RCP6.0, and RCP8.5, respectively. For the seasonal periods, the mean total PET in an
autumn season whose REF value is 219 mm is expected to have a maximum increase as 11.7, 12.1, and 15.2% for RCP4.5,
RCP6.0, and RCP8.5, respectively. The increase rate of 5.6% in the winter and summer seasons and 0.81% in the spring

season for RCP4.5, the increase rate of 6.8, 1, 5.4%, and 9, 2.6, 7.2% for RCP6.0 and RCP8.5 scenarios of winter, spring,
and summer seasons, respectively, are foreseen in the scenario period. The maximum increase rate of PET is expected to
occur in November for all of RCPs as in between 25 and 31% (see Figure 5). In order to analyze whether the possible

PET changes are statistically significant, two sample t-tests were applied (the significance level is 0.05) as tested in the
phase of T simulation. According to the t-tests, possible annual changes for all RCPs are statistically significant. The changes
in the winter, summer, and autumn seasons are expected to be as statistically significant for all RCPs but only in the spring

season is PET foreseen not to deviate significantly throughout the basin. The statistically significant changes are expected for

Figure 4 | Box-plots of mean annual, seasonal, and monthly temperature projected under historical, RCP4.5, RCP6.0 ,and RCP8.5 scenarios.
The acronyms DJF, MAM, JJA, and SON denote winter, spring, summer, and autumn seasons, respectively. The labels in the horizontal axis of
the seasonal box-plots are the initial letters of the months composing the related seasons.
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the months between May and December in all RCPs, for April in the RCP8.5 scenario. It is not predicted that there will be any

statistically significant changes for the rest of the months until 2050.

4.3. Future AI

In the study, the PET simulations for the 2015–2050 scenario period were derived for estimating future AI. As is known,
UNEP AI is the function of mean annual P and mean annual PET. Prior to giving results about AI, we will briefly discuss
the mean annual P simulations over the Gediz Basin from OK16. According to data utilized from OK16, it is predicted
that 8.2, 10.2, and 17.2% decreases throughout the basin for RCP4.5, RCP6.0, and RCP8.5, respectively. A westward expan-

sion of increasing absolute P decrease is foreseen and the absolute changes of possible decreases are maximum in the
Menemen region for all RCPs. The sharpest decreases are expected in the mid-southern and western parts of the basin (Mene-
men, Foca, Koprubasi, Sarigol, and Salihli regions).

Due to the fact that it is expected in the future that there is no region where components of AI move towards humidity, the
AI over the Gediz Basin is expected to tend to decrease in the scenario period. In REF, the DSH climate regime is observed in
the eastern and northeastern parts of the basin. SA climate regime prevails in the major parts of the basin including central,

western, and southern regions. The lowest long-term AI values of 0.35 are calculated for Sarigol and Alasehir regions and 0.36
for the Menemen region such that they are located in the southern and western parts of the basin, respectively. The SH cli-
mate regime is observed in Simav up northeast and in the Kemalpasa region up southwest such that Simav has the highest

long-term AI (0.81) in REF. The long-term AI is calculated as 0.46 for the entire basin which means the SA regime exists in the
period 1980–2005. When examined region by region, 65% of the basin has the SA regime, 25% of the basin has the DSH
regime and the SH regime is experienced in the rest of the basin. On a yearly basis, only in 4% of the time period 1980–
2005, the AI gets the values between 0.65 and 1.0 which corresponds to SH climate characteristics, and in 38% of the

time period, the AI gets the values between 0.5 and 0.65 corresponding to DSH climate characteristics. SA climate state
arises in 58% of the time period such that it represents the main climatic characteristics of the basin for REF.

In the AI simulations, it is obtained that the AI is expected to decrease gradually with respect to REF for all regions of the

basin as the radiative forcing increases. In other words, for all RCP scenarios, it is not foreseen that any H climate regime can
be observed in the scenario period in any of the regions of the Gediz Basin. As in REF, in the western, central, and southern
parts of the basin, the SA climate regime is foreseen to resume in the scenario period for all RCPs. In the RCP4.5 scenario, the

Table 6 | The statistical performances of modified temperature-based PET methods

The coefficients a–d are calibrated in accordance with the PM method. The formulas given on the right are analogous with the original Ham, Bl–Cr, and Thw methods. The recalibrated

coefficients of the Hamon formula and the scatter plot of Ham-based PM simulations are also given for the Akhisar meteorological station. The underlined values denote the best

performances in each station.
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DSH climate regime is expected to prevail in the eastern and northeastern parts of the basin and the SH climate regime is
expected to occur in Simav and Kemalpasa regions but with lower AI values. As experienced in the past period, the
Simav region is foreseen to be the most humid region in the future for all RCPs (with AIs of 0.71, 0.69, 0.63 for RCP4.5,

RCP6.0, and RCP8.5, respectively). In the RCP6.0 scenario, the climate regimes have the analogous spread as in the
RCP4.5 but under drier climatic conditions than those of the REF and RCP4.5 scenario. In RCP8.5, it is expected that dryness
may have more impact on the basin and there may be no region where the SH climate regime prevails. The results of the
RCP8.5 scenario reveal that the most humid regions of the basin, Simav, and Kemalpasa, may have DSH climatic conditions

in the future long-term. In addition to Simav and Kemalpasa, the Demirci region is expected to experience a DSH climate
regime and SA climate conditions are expected to dominate in the rest of the basin. On the regional basis, 10% of the
basin has the SH climate regime for both RCP4.5 and RCP6.0 scenarios as in REF, and it is not expected to be seen in

any region of the basin in RCP8.5. The DSH climate regime is foreseen to occur in regions representing 10 and 15% of
the basin in mid- and high-stabilization scenarios, respectively. Furthermore, the SA climate regime is expected to dominate
over the basin with a rate of 80% for both RCP4.5 and RCP6.0 scenarios and 85% for RCP8.5. The long-term AI for the entire

Gediz Basin is calculated as 0.40, 0.39, and 0.35 which are pronounced as SA climate regimes for all RCPs, and SA conditions
are expected to be dominant over the entire basin in the future (Figure 6). On a yearly basis, the SH climate state is not
expected to occur throughout the scenario period, the DSH climate state may occur in the 17, 22, and 6%, and the SA climate
state may occur in the 83, 75, and 92% of the scenario period for RCP4.5, RCP6.0, and RCP8.5 scenarios, respectively. In

addition, climatic states which correspond to AI values lower than 0.2 can possibly occur throughout the scenario period
with the rate of 3%.

The annual temporal evolution of the direct and indirect components of AI itself was demonstrated in Figure 7. Moreover,

Mann–Kendall trend tests with a 0.05 significance level were performed in order to investigate if there were statistically sig-
nificant trends in each variable. As seen in the related figure, in REF and scenario projections there was almost no significant

Table 7 | The calibrated parameters of the Hamon-based simulation model and its performances

Station

Hamon parameters Calibration Verification

a b c d R2 NS RSR R2 NS RSR

Akhisar 114.25 1.52 0.02 � 65.07 0.980 0.980 0.142 0.979 0.978 0.147

Alasehir 157.58 1.37 0.01 � 96.51 0.986 0.986 0.119 0.985 0.985 0.122

Demirci 103.72 1.54 0.02 � 59.62 0.981 0.981 0.138 0.977 0.977 0.150

Foca 97.09 1.70 0.02 � 41.21 0.970 0.969 0.175 0.966 0.965 0.186

Gediz 107.43 1.49 0.02 � 59.56 0.983 0.982 0.132 0.978 0.978 0.150

Golmarmara 119.48 1.51 0.02 � 69.10 0.981 0.980 0.140 0.979 0.979 0.145

Gordes 110.45 1.54 0.02 � 63.70 0.983 0.982 0.134 0.978 0.978 0.148

Gure 112.48 1.50 0.02 � 61.67 0.984 0.984 0.128 0.990 0.993 0.099

Koprubasi 122.43 1.47 0.02 � 68.62 0.985 0.984 0.124 0.981 0.981 0.138

Kula 146.75 1.38 0.02 � 95.27 0.987 0.986 0.116 0.987 0.987 0.116

Manisa 140.03 1.49 0.02 � 85.69 0.986 0.985 0.122 0.985 0.985 0.123

Menemen 100.97 1.62 0.03 � 57.13 0.973 0.973 0.164 0.977 0.977 0.152

Salihli 162.52 1.38 0.01 � 100.56 0.988 0.987 0.112 0.985 0.985 0.123

Sangol 162.77 1.40 0.01 � 100.36 0.988 0.988 0.111 0.986 0.986 0.118

Saruhanli 120.83 1.56 0.02 � 68.77 0.980 0.979 0.145 0.978 0.977 0.150

Selendi 115.56 1.51 0.02 � 67.88 0.981 0.981 0.139 0.981 0.981 0.137

Turgutlu 145.32 1.49 0.02 � 89.66 0.986 0.985 0.122 0.985 0.985 0.123

Usak 115.41 1.44 0.02 � 66.90 0.983 0.983 0.130 0.979 0.979 0.146

Simav 109.42 1.55 0.02 � 59.54 0.981 0.981 0.138 0.975 0.975 0.158

Kemalpasa 131.79 1.57 0.02 � 78.24 0.985 0.984 0.126 0.984 0.984 0.128
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trend in the P time series, however, for only the RCP6.0 scenario, a decreasing trend was estimated for P. As expected, for

both T and PET, significant increasing trends were encountered with trend tests for REF and RCP scenarios. As for AI, a sig-
nificant trend for REF and RCP4.5 was not predicted, however, a monotonic decreasing trend was seen in both RCP6.0 and

Figure 6 | Spatial variability of mean annual T and PET and long-term AI over the Gediz Basin. ‘ΔT Changes’ below the T column are equal to
TRCP � THistorical and ‘% Changes’ below the PET column are equal to (PETRCP � PETHistorical)=PETHistorical.

Figure 5 | Box-plots of mean total annual, seasonal, and monthly PET projected under historical, RCP4.5, RCP6.0 ,and RCP8.5 scenarios. The
acronyms labeled in the seasonal box-plots are same as in Figure 4.
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RCP8.5 scenarios. In conclusion, it can be interpreted that with the boosting of radiative forcing, the severe aridity is expected
to increase in the basin such that the increment of T and PET are the prominent reasons.

5. DISCUSSION AND CONCLUSIONS

In this work, a projection algorithm was set up to analyze how AI over the Gediz Basin may change until the end of the mid-
21st century. In order to do this implementation, a statistical downscaling procedure was applied so that coarse-resolution 12

GCMs data of three RCPs can be downscaled to the local scale. Following the downscaling stage, a multi-model ensemble and
bias-correction strategy were applied through BMA and EDQMmethods to achieve less uncertain, more robust, and unbiased
T simulations. Ultimately, temperature projections with respect to three RCPs over the Gediz Basin were obtained. The
T-based Ham, Bl–Cr, and Thw equations were modified with respect to PET estimates obtained through the PM method

and hence, the data underlying the PET simulations were produced. The T simulations derived for three different RCPs
were integrated with outperforming Ham-based PET equations and PET simulations that may occur over the Gediz Basin
were obtained for the related concentration pathways. Subsequently, the AI and climatological regime which are expected

over the Gediz Basin were predicted for the scenario period.
Statistical downscaling techniques are very useful methods to downscale raw GCM data to a local scale, especially in

T downscaling. There are several studies made for different regions in the world in which statistical downscaling methods

Figure 7 | The temporal evolution of P (mm), T (°C), PET (mm), and AI for REF and RCP scenarios in the Gediz Basin. The columns from top to
bottom represent the variables P, T, PET, and AI, respectively.
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derive very strong results for T downscaling (Chu et al. 2010; Jeong et al. 2012). In the study, ANN and LSSVM machine

learning methods were employed to downscale T by utilizing the surface temperature variable of ERA-Interim reanalysis
data as input. They both showed results classified as ‘very good’ for all meteorological stations, in fact, they have very
high values of R2 as 0.98–0.99, NS as 0.98–0.99, and very low values of RSR as 0.08–0.12 for both calibration and verification

stages of the models. What is more, the best downscaling results were derived by the models in terms of verification perform-
ances and the opportunity was constituted to utilize the results of both ANN and LSSVM. Hence, it is thought that these
results are very consistent with the temperature simulations prepared for the study area.

Individual GCMs have uncertainty originating from different aspects such as initial and boundary condition uncertainties,

problems in the theoretical definition of the global climate system, and parameter uncertainties (Knutti 2008). In the work, 12
GCMs were utilized instead of employing individual climate models in order to capture the varying notions of research cen-
ters that developed the related climate models. However, it is tedious to decide which climate models should be selected for

the study area. In order to clear up this problem, the multi-GCM strategy developed for the study area was considered to be
the key solution through the BMA model which assigns probabilistic weight for each GCM so that one deterministic result
was obtained for each RCP. Moreover, by means of weight assignment, the BMA model gave us some idea about which cli-

mate model can be more predictive for the Gediz Basin with respect to different periods such as wet and dry. With this
approach, BCC-CSM1.1 and HADGEM2-ES climate models can be thought as stochastically better explanatory models in
comparison to the other ones for wet and dry periods, respectively.

The GCMs have inherent biases with respect to P and T such that they exist more in the predictions made for P due to the
fact that the behaviour of P is more complex in comparison to that of temperature. In OK16, the P biases were corrected
through the QM method where frequencies of model predictions are assigned with respect to distribution parameters of
REF simulation and mapped onto the observed ones. The QM method is appropriate to utilize in P simulations, however,

it may overestimate monthly temperature in so far as the future temperature is expected to exceed the historical range and
the distribution does not change for the future adjustments. Hence, EDQM in which simulation distribution is taken into con-
sideration was utilized in the study, and physically conceivable T simulations were derived.

Although PM is introduced as a reference method in the literature, its usage is sometimes troublesome on account of the
lack of continuously observed data required by PM. Thus, an efficient strategy was implemented in the study by converting
T-based methods in accordance with PM estimates. It enabled us to project PET by locally calibrated methods built upon

down scalable T variables which were compatible with the mechanism of PM. Among the T-based methods, the Hamon
method shows the best performance in that it utilizes only the duration of the daylight component in addition to T.

It is expected that the Gediz Basin has an increasing trend of T and PET in the scenario period. The highest mean annual
change is expected to take place in the western, central, and southern parts of the basin. As is known, T is an effective factor

causing PET, hence, it is natural that maximum increases in PET are expected in western, central, and southern parts where
the most important water resources of the Gediz Basin such as Demirkopru Dam, Marmara Lake, Gordes Dam, Avsar Dam,
and Buldan Dam are existing. Moreover, the irrigated fields are extending from the southern part to the western part of the

basin. When it is thought that the mean areal P over these parts is expected to decrease, it may be inevitable that the irrigation
water requirements may increase in the future. There is another study by Ozkul (2009) prepared for the future climate of the
Gediz Basin. Overall, in Ozkul (2009), the GCMs of B2 and A2 emission scenarios of TAR and AR4 are utilized. According to

T simulations (using only four meteorological stations), 1.2 and 2 °C changes by 2050 are predicted in B2 and A2 scenarios,
respectively. B2 and A2 scenarios have similarities with RCP4.5 and RCP6.0, so, when the related simulations are compared
to those prepared for this study, there are þ0.35 and �0.4 °C differences between this study and Ozkul (2009). Furthermore,

when mean annual PET results were compared for Menemen and Manisa stations (only the results of two meteorological
stations are available) increases of 16% for B2 and 17% for A2 are expected in the Menemen station, and a 15% increase
is expected in the Manisa station for both B2 and A2 scenarios, respectively. In this work, changes of 6.2% and 6.5% in Mene-
men and 5.3% and 5.4% for Manisa are expected for RCP4.5 and RCP6.0 scenarios, respectively. Although the results of the

related study support this study, the use of different methodology, up-to-date scenarios, and comprehensive examination of
the basin with 20 meteorological stations add to this study’s novelty. In addition to Ozkul (2009), this study captures analo-
gous results with Tabari & Willems (2018a) in which they find that western Turkey (also covering the Gediz Basin) in

particular may experience decreases in P greater than 20% at the end of the 21st century. Moreover, they foresee that
number of dry days and longest dry spell expected in the future may increase in the region. What is more, as claimed in studies
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of Zarghami et al. (2011) and Nastos et al. (2013) prepared for Azerbaijan, Iran, and Greece which are neigboring countries

of Turkey, they predict drier climate conditions than those of the past period as expected in our study.
In the literature, some references are related to topics such as signal-to-noise (S/N) interpretation and uncertainty

decomposition theory in climate change impact assessments (Hawkins & Sutton 2011; Tabari & Willems 2018b) in which

the sources of climatic variability are discussed. In this study, the issues such as detection of uncertainty stemmed from cli-
mate models or GHG concentration scenarios were not covered; however, internal variability was simply tackled in this
section in brief. The coefficient of variation (CV) which can be considered as reciprocal of the S/N ratio was calculated
for REF and RCPs and the reasons for AI variability were queried. Asfaw et al. (2018) and Hare (2003) have expressed

that a higher value of the CV is the indicator of larger variability. Instead of checking S/N ratios, inter-annual CV statistics
for T, P, and AI were examined. Since the study is on the subject of projected aridity, the extent to which the variability in the
AI was affected by the variations in P and T is investigated. At this stage, the inter-annual CV values calculated for the AI were

analyzed by means of scattering diagrams (not presented here) in response to that of P and T, respectively. The obtained
results demonstrated that inter-annual variability in the AI is more directed by P variability. Although it is monitored that
the increase in inter-annual variability of T has an inverse effect on AI’s variability, the correlations between them are not

statistically significant. The main reason for this is that the trend in annual average T indicates a significant increase
during the existed period, while the inter-annual irregularities in the P point out both no-trending and the large CV. In
our future works, we have in view to deal with the methodologies, which were effectively applied by Tabari & Willems

(2018b), to decompose total uncertainty into uncertainty originating from various stages of climate change projections.
Another noticeable finding obtained in the study is that the results of RCP4.5 and RCP6.0 are very close to each other. As

known, PET is the function of T and AI is that of P and PET. Hence, it was decided by the authors to check out how raw GCM
data of P and T vary for RCP4.5 and RCP6.0 scenarios. When examining the raw data of 12 GCM data, the similar close

values draw attention to the scenario period. Overall, approximately the difference of �18 mm which corresponds to
0.035% of the raw historical data in mean annual P, and of þ0.1 °C in mean annual T are projected by the climate models
in the grids of study area. The range increases between the years 2051–2100 with the difference of �20 mm (0.04% of raw

historical data) and þ0.4 °C are projected in mean annual P and mean annual T, respectively. When the emission scenarios
of AR5 are taken into consideration, the difference in GHG emission between the scenarios RCP4.5 and RCP6.0 are increas-
ing right after the first half of the 21st century. Hence, it is logical to derive close results between RCP4.5 and RCP6.0

scenarios in the projections made for the first half of the 21st century. Moreover, there are other studies made in different
regions of the world such as India (Chaturvedi et al. 2012) and North America (Swain & Hayhoe 2015) in which close results
were derived for RCP4.5 and RCP6.0 scenarios.

Upon evaluating all simulations, it is obvious that negative effects of climate change on the Gediz Basin are expected in

terms of aridity. In the past, the Gediz Basin experienced three types of climate regimes as SH, DSH, and SA in various
regions of the area. The reason for possible negative effects of future climate on humid regions is that these regions are
expected to have drier spells and conversion of the climate regime into DSH and SA in the Gediz Basin until the end of

the mid-21st century. In terms of long-term AI, the climate regime in the REF is SA and this situation is not expected to
change according to all of the RCPs. However, the values of AI which are calculated with respect to increasing GHG emis-
sion scenarios signify climate states forcing the A climate zone may come into existence in the conditions of RCPs. In the

pessimistic scenario, it seems that the SA climate regime may overwhelmingly dominate the study area. When assessed on
a regional basis, the driest parts of the region may exist in the lower Gediz Basin where Avsar and Buldan irrigation dams
are operated for the agricultural fields. Moreover, the central and western parts of the basin where the other water resources

exist are in the tendency of being in the SA climate zone. Bannayan et al. (2010) made a study about the correlation between
agricultural productivity and AIs in Iran and found a positive correlation between grain yield and AI. Hence, due to the fact
that agricultural activities are intensely available in the Gediz Basin, it is recommended by the authors that a study should be
made about how agricultural productivity may change in the future with respect to aridity for the sustainability of the agri-

cultural sector.
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