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1. Introduction

Metric fixed point theory is important to find
some applications in many areas such as topol-
ogy, analysis, differential equations etc. So differ-
ent generalizations of metric spaces were studied
(see [1], [2], [3], [4], [5], [6] and [7]). For exam-
ple, Mustafa and Sims introduced a new notion
of “G-metric space” [6]. Mohanta proved some
fixed point theorems for self-mappings satisfying
some kind of contractive type conditions on com-
plete G-metric spaces [5].

Recently Sedghi, Shobe and Aliouche have defined
the concept of an S-metric space in [7] as follows:

Definition 1. [7] Let X be a nonempty set and
S : X ×X ×X → [0,∞) be a function satisfying
the following conditions for all x, y, z, a ∈ X :

(S1) S(x, y, z) = 0 if and only if x = y = z,

(S2) S(x, y, z) ≤ S(x, x, a)+S(y, y, a)+S(z, z, a).

Then S is called an S-metric on X and the pair
(X,S) is called an S-metric space.

Let (X, d) be a complete metric space and T be a
self-mapping of X. In [8], T is called a Rhoades’
mapping if the following condition is satisfied:

(R25) d(Tx, Ty) < max{d(x, y), d(x, Tx),
d(y, Ty), d(x, Ty), d(y, Tx)},

for each x, y ∈ X, x ̸= y. Any fixed point result
was not given for a Rhoades’ mapping in [8]. Since
then, many fixed point theorems were obtained by
several authors for a Rhoades’ mapping (see [9],
[10] and [11]). Furthermore, the Rhoades’ con-
dition was extended on S-metric spaces and new
fixed point results were presented (see [12], [13]
and [14]). Now we recall the Rhoades’ condition
on an S-metric space.

Let (X,S) be an S-metric space and T be a self-
mapping of X. In [12] and [14], the present au-
thors defined Rhoades’ condition (S25) on (X,S)
as follows:

(S25) S(Tx, Tx, Ty) < max{S(x, x, y),
S(Tx, Tx, x),S(Ty, Ty, y),
S(Ty, Ty, x),S(Tx, Tx, y)},

for each x, y ∈ X, x ̸= y.
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In this paper, to obtain a new generalization of
the Rhoades’ condition, we introduce the notion
of an S-normed space. We give some basic con-
cepts and topological definitions related to an S-
norm. Then, we study a new form of Rhoades’
condition (R25) on S-normed spaces and obtain
a fixed point theorem. In Section 2, we introduce
the definition of an S-norm on X and investigate
some basic properties which are needed in the se-
quel. We investigate the relationships among an
S-norm and other known concepts by counter ex-
amples. In Section 3, we define Rhoades’ condi-
tion (NS25) on an S-normed space. We study a
fixed point theorem using the condition (NS25)
and the notions of reflexive S-Banach space, S-
normality, closure property and convexity. In Sec-
tion 4, we investigate some comparisons on S-
normed spaces such as the relationships between
the conditions (NR25) and (NS25).

2. S-normed spaces

In this section, we introduce the notion of an S-
normed space and investigate some basic concepts
related to an S-norm. We study the relationships
between an S-metric and an S-norm (resp. an
S-norm and a norm).

Definition 2. Let X be a real vector space. A
real valued function ∥., ., .∥ : X ×X ×X → R is
called an S-norm on X if the following conditions
hold:

(NS1) ∥x, y, z∥ ≥ 0 and ∥x, y, z∥ = 0 if and only
if x = y = z = 0,

(NS2) ∥λx, λy, λz∥ = |λ| ∥x, y, z∥ for all λ ∈ R
and x, y, z ∈ X,

(NS3) ∥x + x′, y + y′, z + z′∥ ≤ ∥0, x, z′∥ +
∥0, y, x′∥ + ∥0, z, y′∥ for all x, y, z, x′, y′, z′ ∈ X.

The pair (X, ∥., ., .∥) is called an S-normed space.

Example 1. Let X = R and ∥., ., .∥ : X × X ×
X → R be the function defined by

∥x, y, z∥ = |x|+ |y|+ |z| ,

for all x, y, z ∈ X. Then (X, ∥., ., .∥) is an S-
normed space. Indeed, we show that the function
∥., ., .∥ satisfies the conditions (NS1), (NS2) and
(NS3).

(NS1) By the definition, clearly we have
∥x, y, z∥ ≥ 0 for all x, y, z ∈ X. If ∥x, y, z∥ =
|x|+ |y|+ |z| = 0, we obtain x = y = z = 0.

(NS2) Let x, y, z ∈ X and λ ∈ R. Then we have

∥λx, λy, λz∥ = |λx|+ |λy|+ |λz|
= |λ| |x|+ |λ| |y|+ |λ| |z|
= |λ| (|x|+ |y|+ |z|)
= |λ| ∥x, y, z∥.

(NS3) Let x, y, z, x′, y′, z′ ∈ X. Then we obtain

∥x+ x′, y + y′, z + z′∥ =
∣∣x+ x′

∣∣+ ∣∣y + y′
∣∣

+
∣∣z + z′

∣∣
≤ |x|+

∣∣x′∣∣+ |y|+
∣∣y′∣∣

+ |z|+
∣∣z′∣∣

≤ |0|+ |x|+
∣∣z′∣∣

+ |0|+ |y|+
∣∣x′∣∣

+ |0|+ |z|+
∣∣y′∣∣

= ∥0, x, z′∥+ ∥0, y, x′∥
+ ∥0, z, y′∥.

Consequently, the function ∥., ., .∥ satisfies the
conditions (NS1), (NS2), (NS3) and so
(X, ∥., ., .∥) is an S-normed space.

Now, we show that every S-norm generates an
S-metric.

Proposition 1. Let (X, ∥., ., .∥) be an S-normed
space. Then the function S : X×X×X → [0,∞)
defined by

S(x, y, z) = ∥x− y, y − z, z − x∥ (1)

is an S-metric on X.

Proof. Using the condition (NS1), it can be eas-
ily seen that the condition (S1) is satisfied. We
show that the condition (S2) is satisfied. By
(NS3), we have

S(x, y, z) = ∥x− y, y − z, z − x∥

=

∥∥∥∥ x− a+ a− y, y − a+ a− z
, z − a+ a− x

∥∥∥∥
≤ ∥0, x− a, a− x∥+ ∥0, y − a, a− y∥
+ ∥0, z − a, a− z∥
= S(x, x, a) + S(y, y, a) + S(z, z, a),

for all x, y, z, a ∈ X.

Then, the function S is an S-metric and the pair
(X,S) is an S-metric space. □



A new generalization of Rhoades’ condition 171

We call the S-metric defined in (1) as the S-metric
generated by the S-norm ∥., ., .∥ and denoted by
S∥.∥.

Corollary 1. Every S-normed space is an S-
metric space.

Example 2. Let X be a nonempty set, (X, d) be
a metric space and S : X × X × X → [0,∞) be
the function defined by

S(x, y, z) = d(x, y) + d(x, z) + d(y, z),

for all x, y, z ∈ X. Then the function S is an
S-metric on X [7].

Let X = R. If we consider the usual metric d on
X, we obtain the S-metric S defined as

S(x, y, z) = |x− y|+ |x− z|+ |y − z| ,

for all x, y, z ∈ R. Using Proposition 1, we see
that S is generated by the S-norm defined in Ex-
ample 1. Indeed, we have

S(x, y, z) = ∥x− y, y − z, z − x∥
= |x− y|+ |y − z|+ |z − x|
= |x− y|+ |x− z|+ |y − z|
= d(x, y) + d(x, z) + d(y, z),

for all x, y, z ∈ X.

Lemma 1. An S-metric S generated by an S-
norm on an S-normed space X satisfies the fol-
lowing conditions

(1) S(x+ a, y + a, z + a) = S(x, y, z),
(2) S(λx, λy, λz) = |λ| S(x, y, z),

for each x, y, z, a ∈ X and every scalar λ.

Proof. The proof follows easily from the Propo-
sition 1. □

We note that every S-metric can not be generated
by an S-norm as we have seen in the following ex-
ample:

Example 3. Let X be a nonempty set and the
function S : X ×X ×X → [0,∞) be defined by

S(x, y, z) =

{
0 ; if x = y = z
1 ; otherwise

,

for all x, y, z ∈ X. Then the function S is an
S-metric on X. We call this S-metric is the dis-
crete S-metric on X. The pair (X,S) is called
discrete S-metric space. Now, we prove that this
S-metric can not be generated by an S-norm. On
the contrary, we assume that this S-metric is gen-
erated by an S-norm. Then the following equation
should be satisfied :

S(x, y, z) = ∥x− y, y − z, z − x∥,

for all x, y, z ∈ X.

If we consider the case x = y ̸= z and |λ| ≠ 0, 1
then we obtain

S(λx, λy, λz)

= ∥0, λ(y − z), λ(z − x)∥ = 1

̸= |λ|S(x, y, z)
= |λ| ∥0, y − z, z − x∥ = |λ| ,

which is a contradiction with (NS2). Conse-
quently, this S-metric can not be generated by an
S-norm.

We use the following result in the next section.

Lemma 2. Let (X, ∥., ., .∥) be an S-normed space.
We have

∥0, x− y, y − x∥ = ∥0, y − x, x− y∥,

for each x, y ∈ X.

Proof. By the condition (NS3), we get

∥0, x− y, y − x∥ ≤ ∥0, 0, 0∥+ ∥0, 0, 0∥
+∥0, y − x, x− y∥ = ∥0, y − x, x− y∥ (2)

and

∥0, y − x, x− y∥ ≤ ∥0, 0, 0∥+ ∥0, 0, 0∥
+∥0, x− y, y − x∥ = ∥0, x− y, y − x∥. (3)

Using (2) and (3) we obtain ∥0, x − y, y − x∥ =
∥0, y − x, x− y∥. □

We recall the definition of a norm on X as follows.

Let X be a real vector space. A real valued func-
tion ∥.∥ : X → R is called a norm on X if the
following conditions hold:

(N1) ∥x∥ ≥ 0 for all x ∈ X.

(N2) ∥x∥ = 0 if and only if x = 0 for all x ∈ X.

(N3) ∥λx∥ = |λ| ∥x∥ for all λ ∈ R and x ∈ X.

(N4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

The pair (X, ∥.∥) is called a normed space.

We show that every norm generates an S-norm.
We give the following proposition.

Proposition 2. Let (X, ∥.∥) be a normed space
and the function ∥., ., .∥ : X × X × X → R be
defined by

∥x, y, z∥ = ∥x∥+ ∥y∥+ ∥z∥, (4)
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for all x, y, z ∈ X. Then (X, ∥., ., .∥) is an S-
normed space.

Proof. We show that the function ∥., ., .∥ defined
in (4) satisfies the conditions (NS1), (NS2) and
(NS3).

(NS1) It is clear that ∥x, y, z∥ ≥ 0 and ∥x, y, z∥ =
0 if and only if x = y = z = 0.

(NS2) Let λ ∈ R and x, y, z ∈ X. Then we obtain

∥λx, λy, λz∥ = ∥λx∥+ ∥λy∥+ ∥λz∥
= |λ| ∥x∥+ |λ| ∥y∥+ |λ| ∥z∥
= |λ| (∥x∥+ ∥y∥+ ∥z∥)
= |λ| ∥x, y, z∥.

(NS3) Let x, y, z, x′, y′, z′ ∈ X. Then we obtain

∥x+ x′, y + y′, z + z′∥
= ∥x+ x′∥+ ∥y + y′∥+ ∥z + z′∥
≤ ∥x∥+ ∥x′∥+ ∥y∥+ ∥y′∥+ ∥z∥+ ∥z′∥
= ∥0∥+ ∥x∥+ ∥z′∥+ ∥0∥+ ∥y∥
+ ∥x′∥+ ∥0∥+ ∥z∥+ ∥y′∥
= ∥0, x, z′∥+ ∥0, y, x′∥+ ∥0, z, y′∥.

Consequently, the function ∥., ., .∥ satisfies the
conditions (NS1), (NS2), (NS3) and so
(X, ∥., ., .∥) is an S-normed space. □

We have proved that every norm on X defines an
S-norm on X. We call the S-norm defined in (4)
as the S-norm generated by the norm ∥.∥. For
example, the S-norm defined in Example 1 is the
S-norm generated by the usual norm on R.
There exists an S-norm which is not generated by
a norm as we have seen in the following example.

Example 4. Let X be a nonempty set and the
function ∥., ., .∥ : X ×X ×X → R be defined by

∥x, y, z∥ = |x− 2y − 2z|+ |y − 2x− 2z|
+ |z − 2y − 2x| ,

for all x, y, z ∈ X. Then, the function ∥., ., .∥ is
an S-norm on X, but it is not generated by a
norm.

Now, we show that the conditions (NS1), (NS2)
and (NS3) are satisfied.

(NS1) By the definition, clearly we obtain
∥x, y, z∥ ≥ 0 and ∥x, y, z∥ = 0 if and only if
x = y = z = 0 for all x, y, z ∈ X.

(NS2) We have

∥λx, λy, λz∥ = |λx− 2λy − 2λz|
+ |λy − 2λx− 2λz|
+ |λz − 2λy − 2λx|

= |λ|

 |x− 2y − 2z|
+ |y − 2x− 2z|
+ |z − 2y − 2x|


= |λ| ∥x, y, z∥,

for all λ ∈ R and x, y, z ∈ X.

(NS3) Let x, y, z, x′, y′, z′ ∈ X. Then we obtain

∥x+ x′, y + y′, z + z′∥
=
∣∣x+ x′ − 2y − 2y′ − 2z − 2z′

∣∣
+
∣∣y + y′ − 2x− 2x′ − 2z − 2z′

∣∣
+
∣∣z + z′ − 2y − 2y′ − 2x− 2x′

∣∣
≤
∣∣2x+ 2z′

∣∣+ ∣∣x− 2z′
∣∣

+
∣∣z′ − 2x

∣∣+ ∣∣2y + 2x′
∣∣

+
∣∣y − 2x′

∣∣+ ∣∣x′ − 2y
∣∣

+
∣∣2z + 2y′

∣∣+ ∣∣z − 2y′
∣∣

+
∣∣y′ − 2z

∣∣
= ∥0, x, z′∥+ ∥0, y, x′∥+ ∥0, z, y′∥.

Consequently, the function ∥., ., .∥ is an S-norm
on X.

On the contrary, we assume that this S-norm is
generated by a norm. Then the following equation
should be satisfied

∥x, y, z∥ = ∥x∥+ ∥y∥+ ∥z∥,

for all x, y, z ∈ X.

If we consider ∥x, 0, 0∥ and ∥x, x, 0∥ then we ob-
tain

∥x, 0, 0∥ = ∥x∥ = |x|+ |2x|+ |2x| = 5 |x| ,
∥x, x, 0∥ = 2 |x| = |x|+ |x|+ |4x| = 6 |x|

and so ∥x∥ = 5 |x| and ∥x∥ = 3 |x|, which is a
contradiction. Hence this S-norm is not gener-
ated by a norm.

Now we prove that every S-norm generate a norm.

Proposition 3. Let X be a nonempty set,
(X, ∥., ., .∥) be an S-normed space and the func-
tion ∥.∥ : X → R be defined as follows:

∥x∥ = ∥0, x, 0∥+ ∥0, 0, x∥,
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for all x ∈ X. Then the function ∥.∥ is a norm
on X and (X, ∥.∥) is a normed space.

Proof. Using the conditions (NS1) and (NS2),
it is clear that we obtain the conditions (N1),
(N2) and (N3) are satisfied.

Now, we show that the condition (N4) is satisfied.

(N4) Let x, y ∈ X. By the condition (NS3), we
have

∥x+ y∥ = ∥0, x+ y, 0∥+ ∥0, 0, x+ y∥
= ∥0, x+ y, 0∥+ ∥0, 0, y + x∥
≤ ∥0, 0, 0∥+ ∥0, x, 0∥+ ∥0, 0, y∥
+ ∥0, 0, x∥+ ∥0, 0, 0∥+ ∥0, y, 0∥
= ∥x∥+ ∥y∥.

Consequently, the function ∥.∥ is a norm on X
and (X, ∥.∥) is a normed space. □

We call this norm as the norm generated by the
S-norm ∥., ., .∥.
Let X be a real vector space. New generaliza-
tions of normed spaces have been studied in re-
cent years. For example, Khan defined the notion
of a G-norm and studied some topological con-
cepts in G-normed spaces [15]. Now we recall the
definition of a G-norm and give the relationship
between a G-norm and an S-norm.

Definition 3. [15] Let X be a real vector space.
A real valued function ∥., ., .∥ : X×X×X → R is
called a G-norm on X if the following conditions
hold:

(NG1) ∥x, y, z∥ ≥ 0 and ∥x, y, z∥ = 0 if and only
if x = y = z = 0.

(NG2) ∥x, y, z∥ is invariant under permutations
of x, y, z.

(NG3) ∥λx, λy, λz∥ = |λ| ∥x, y, z∥ for all λ ∈ R
and x, y, z ∈ X.

(NG4) ∥x + x′, y + y′, z + z′∥ ≤ ∥x, y, z∥ +
∥x′, y′, z′∥ for all x, y, z, x′, y′, z′ ∈ X.

(NG5) ∥x, y, z∥ ≥ ∥x+y, 0, z∥ for all x, y, z ∈ X.

The pair (X, ∥., ., .∥) is called a G-normed space.

Proposition 4. Every G-normed space is an S-
normed space.

Proof. Using the conditions (NG1) and (NG3),
we see that the conditions (NS1) and (NS2) are
satisfied. We only show that the condition (NS3)
is satisfied.

(NS3) Let x, y, z, x′, y′, z′ ∈ X. Using the condi-
tions (NG2) and (NG4), we obtain

∥x+ x′, y + y′, z + z′∥
= ∥(x+ 0) + x′, 0 + (y + y′), z′ + z∥
≤ ∥x+ 0, 0, 0 + z′∥+ ∥x′, y + y′, z∥
= ∥0, 0 + x, 0 + z′∥+ ∥x′, y + y′, z∥
≤ ∥0, 0, 0∥+ ∥0, x, z′∥+ ∥x′, y, 0∥+ ∥0, y′, z∥
= ∥0, x, z′∥+ ∥0, y, x′∥+ ∥0, z, y′∥.

Consequently, the condition (NS3) is satis-
fied. □

The converse of Proposition 4 can not be always
true as we have seen in the following example.

Example 5. Let X = R and the S-norm be de-
fined as in Example 4. If we put x = 1, y = 5
and z = 0, the condition (NG5) is not satisfied.
Indeed, we have

∥x, y, z∥ = |x− 2y − 2z|+ |y − 2x− 2z|
+ |z − 2y − 2x|

= 23

and

∥x+ y, 0, z∥ = |x+ y − 2z|+ |2x+ 2y + 2z|
+ |z − 2y − 2x|

= 30.

Hence this S-norm is not a G-norm on R.

Now we give the definitions of an open ball and a
closed ball on an S-normed space.

Definition 4. Let (X, ∥., ., .∥) be an S-normed
space. For given x0, a1, a2 ∈ X and r > 0, the
open ball Ba2

a1 (x0, r) and the closed ball Ba2
a1 [x0, r]

are defined as follows:

Ba2
a1 (x0, r) = {y ∈ X : ∥y−x0, y−a1, y−a2∥ < r}

and

Ba2
a1 [x0, r] = {y ∈ X : ∥y−x0, y−a1, y−a2∥ ≤ r}.

Example 6. Let us consider the S-normed space
(X, ∥., ., .∥) generated by the usual norm on X,
where X = R2 and

∥x∥ = ∥(x1, x2)∥ =
√

x21 + x22,
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for all x ∈ R2. Then the open ball Ba2
a1 (x0, r) in

R2 is a 3-ellipse given by

Ba2
a1 (x0, r) = {y ∈ R2 : ∥y − x0∥+ ∥y − a1∥+ ∥y − a2∥ < r}.

If we choose y = (y1, y2), x0 = (1, 1), a1 = (0, 0),
a2 = (−1,−1) in R2 and r = 5, then we obtain

Ba2
a1 (x0, r) =


y ∈ R2 :

√
(y1 − 1)2 + (y2 − 1)2

+
√
y21 + y22

+
√

(y1 + 1)2 + (y2 + 1)2 < 5

 ,

(5)

as shown in Figure 1a.

Now we give the following example using an S-
norm which is not generated by a norm.

Example 7. Let X = R2 and the function
∥., ., .∥ : X × X × X → R be defined as in Ex-
ample 4. Then we have

∥x, y, z∥
= |x− 2y − 2z|+ |y − 2x− 2z|+ |z − 2y − 2x|

=
√

(x1 − 2y1 − 2z1)2 + (x2 − 2y2 − 2z2)2

+
√

(y1 − 2x1 − 2z1)2 + (y2 − 2x2 − 2z2)2

+
√

(z1 − 2y1 − 2x1)2 + (z2 − 2y2 − 2x2)2,

for all x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈
R2. Then (R2, ∥., ., .∥) is an S-normed space. The
open ball Ba2

a1 (x0, r) in R2 is

Ba2
a1 (x0, r) = {y ∈ R2 : ∥y−x0, y−a1, y−a2∥ < r}.

If we choose y = (y1, y2), x0 = (1, 1), a1 = (0, 0),
a2 = (−1,−1) in R2 and r = 20, then we obtain

Ba2
a1 (x0, r) =


y ∈ R2 :

√
(3y1 + 3)2 + (3y2 + 3)2

+
√
9y21 + 9y22

+
√
(3− 3y1)2 + (3− 3y2)2 < 20

 ,

(6)

as shown in Figure 1b.

Definition 5. Let (X, ∥., ., .∥) be an S-normed
space.

(1) A sequence {xn} in X converges to x if
and only if

lim
n→∞

∥0, xn − x, x− xn∥ = 0.

That is, for each ε > 0 there exists n0 ∈ N
such that

∥0, xn − x, x− xn∥ < ε,

for all n ≥ n0.
(2) A sequence {xn} in X is called a Cauchy

sequence if

lim
n,m,l→∞

∥xn − xm, xm − xl, xl − xn∥ = 0.

That is, for each ε > 0 there exists n0 ∈ N
such that

∥xn − xm, xm − xl, xl − xn∥ < ε,

for all n,m, l ≥ n0.
(3) An S-normed space is called complete if

each Cauchy sequence in X converges in
X.

(4) A complete S-normed space is called an
S-Banach space.

Proposition 5. Every convergent sequence in an
S-normed space is a Cauchy sequence.

Proof. Let a sequence {xn} in X be convergent
to x. For each ε > 0, there exists n0 ∈ N such
that

∥0, xn − x, x− xn∥ <
ε

3
,

for all n ≥ n0. We now show that for each ε > 0
there exists n0 ∈ N such that

∥xn − xm, xm − xl, xl − xn∥ < ε,

for all n,m, l ≥ n0. Using the condition (NS3),
we obtain

∥xn − xm, xm − xl, xl − xn∥

=

∥∥∥∥ xn − x+ x− xm, xm − x
+x− xl, xl − x+ x− xn

∥∥∥∥
≤ ∥0, xn − x, x− xn∥+ ∥0, xm − x, x− xm∥
+ ∥0, xl − x, x− xl∥

<
ε

3
+

ε

3
+

ε

3
= ε.

Consequently, the sequence {xn} inX is a Cauchy
sequence. □

The converse of Proposition 5 can not be always
true as we have seen in the following example.

Example 8. Let X = (0, 1) ⊂ R and the function
∥., ., .∥ : X × X × X → R be an S-norm gener-
ated by the usual norm on X. If we consider the

sequence {xn} =

{
1

n

}
on X, then this sequence
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(a) The open ball which is corresponding
to the S-norm defined in (5).

(b) The open ball which is corresponding
to the S-norm defined in (6).

Figure 1. Some open balls in (R2, ∥., ., .∥)

is a Cauchy sequence, but it is not a convergent
sequence on X.

Now we show that the sequence is a Cauchy se-
quence. For xn, xm, xl ∈ X, we obtain

lim
n,m,l→∞

∥xn − xm, xm − xl, xl − xn∥

= lim
n,m,l→∞

∥∥∥∥ 1n − 1

m
,
1

m
− 1

l
,
1

l
− 1

n

∥∥∥∥
= lim

n,m,l→∞

(∣∣∣∣ 1n − 1

m

∣∣∣∣+ ∣∣∣∣ 1m − 1

l

∣∣∣∣+ ∣∣∣∣1l − 1

n

∣∣∣∣) = 0.

The sequence is convergent to 0 as follows:

lim
n→∞

∥0, xn − x, x− xn∥ = lim
n→∞

∥∥0, 1
n − 0, 0− 1

n

∥∥ = 0,

for all xn ∈ X. But 0 /∈ X. Consequently, the
sequence is not convergent on X.

3. A fixed point theorem on S-normed
spaces

In this section, we introduce the Rhoades’ con-
dition on an S-normed space and denote it by
(NS25). We prove a fixed point theorem using
this contractive condition.

At first, we give some definitions and a proposi-
tion which are needed in the sequel.

Definition 6. Let (X, ∥., ., .∥) be an S-normed
space and E ⊆ X. The closure of E, denoted
by E, is the set of all x ∈ X such that there exists
a sequence {xn} in E converging to x. If E = E,
then E is called a closed set.

Definition 7. Let (X, ∥., ., .∥) be an S-normed
space and A ⊆ X. The subset A is called bounded
if there exists r > 0 such that

∥0, x− y, y − x∥ < r,

for all x, y ∈ A.

Definition 8. Let (X, ∥., ., .∥) be an S-normed
space and A ⊆ X. The S-diameter of A is de-
fined by

δs(A) = sup{∥0, x− y, y − x∥ : x, y ∈ A}.

If A is bounded then we will write δs(A) < ∞.

Definition 9. Let X be an S-Banach space, A ⊆
X and u ∈ X.

(1) The S-radius of A relative to a given u ∈
X is defined by

rsu(A) = sup{∥0, u− x, x− u∥ : x ∈ A}.
(2) The S-Chebyshev radius of A is defined by

rs(A) = inf{rsu(A) : u ∈ A}.
(3) The S-Chebyshev centre of A is defined by

Cs(A) = {u ∈ A : rsu(A) = rs(A)}.

By Definition 8 and Definition 9, it can be easily
seen the following inequality:

rs(A) ≤ rsu(A) ≤ δs(A).

Definition 10. A point u ∈ A is called S-
diametral if rsu(A) = δs(A). If rsu(A) < δs(A),
then u is called non-S-diametral.

Definition 11. A convex subset of an S-Banach
space X has S-normal structure if every S-
bounded and convex subset of A having δs(A) > 0
has at least one non-S-diametral point.

Proposition 6. If X is a reflexive S-Banach
space, A is a nonempty, closed and convex subset
of X, then Cs(A) is nonempty, closed and convex.

Proof. It can be easily seen by definition of
Cs(A). □
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Now we introduce the Rhoades’ condition (NS25)
on an S-Banach space.

Definition 12. Let (X, ∥., ., .∥) be an S-Banach
space and T be a self-mapping of X. We define

(NS25) ∥0, Tx− Ty, Ty − Tx∥

< max


∥0, x− y, y − x∥,

∥0, Tx− x, x− Tx∥,
∥0, Ty − y, y − Ty∥,
∥0, Ty − x, x− Ty∥,
∥0, Tx− y, y − Tx∥

 ,

for each x, y ∈ X, x ̸= y.

Lemma 3. [16] Let X be a Banach space. Then
X is reflexive if and only if for any decreasing
sequence {Kn} of nonempty, bounded, closed and
convex subsets of X,

∞⋂
n=1

Kn ̸= ∅.

Lemma 4. Let X be an S-Banach space. Then
X is reflexive if and only if for any decreasing
sequence {Kn} of nonempty, bounded, closed and
convex subsets of X,

∞⋂
n=1

Kn ̸= ∅.

Proof. By the definition of reflexivity the proof
follows easily. □

Recall that the convex hull of a set A is denoted
by conv(A) and any member of this set conv(A)
has the form

n∑
i=1

αixi,

where xi ∈ Ai, αi ≥ 0 for all i = 1, ..., n and
n∑

i=1
αi = 1.

Now, we give the following fixed point theorem.

Theorem 1. Let X be a reflexive S-Banach space
and A be a nonempty, closed, bounded and con-
vex subset of X, having S-normal structure. If
T : A → A is a continuous self-mapping satis-
fying the condition (NS25) then T has a unique
fixed point in A.

Proof. At first, we show that the existence of
the fixed point. Let A be the family of every
nonempty, closed and convex subsets of A. Also
we assume that if F ∈ A then TF ⊆ F . The fam-
ily A is nonempty since A ∈ A. We can partially
order A by set inclusion, that is, if F1 ⊆ F2 then
F1 ≤ F2.

In A, if we define a decreasing net of subsets

S = {Fi : Fi ∈ A, i ∈ I},

then by reflexivity, this net S has nonempty in-
tersection. Because it is a decreasing net of
nonempty, closed, bounded and convex subsets of
X. If we put F0 =

⋂
i∈I

Fi we have that F0 is in A

and is a lower bound of S.

Using Zorn’s Lemma, there is a minimal element,
denoted by F , in A as S is any arbitrary decreas-
ing net in A. We see that this F is a singleton.

Assume that δs(F ) ̸= ∅. Since F is nonempty,
closed and convex, Cs(F ) is a nonempty, closed
and convex subset of F . We have that

rs(F ) < δs(F ),

δs(Cs(F )) ≤ rs(F ) < δs(F )

and so Cs(F ) is a proper subset of F .

Let (Fm)m∈N be an increasing sequence of subsets
of F , defined by

F1 = Cs(F ) and Fm+1 = conv(Fm ∪ TFm),

for all m ∈ N. If we denote the S-diameters of
these sets Fk by δsk = δs(Fk), we show that

δsk ≤ rs(F ),

for all k ∈ N.
Using the (PMI), we obtain

(1) For k = 1,

δs1 = δs(F1) = δs(Cs(F )) ≤ rs(F ).

(2) If δsk ≤ rs(F ) for every k = 1, ...,m then
δsm+1 ≤ rs(F ).

We note that

δsm+1 = δs(Fm+1) = δs(conv(Fm ∪ TFm))

= δs(Fm ∪ TFm).

By the definition of S-diameter, for any given
ε > 0 there are x′ and y′ in Fm ∪ T (Fm) satis-
fying

δsm+1 − ε < ∥0, x′ − y′, y′ − x′∥ ≤ δsm+1.

We obtain the following three cases for x′, y′:

(1) x′, y′ ∈ Fm or
(2) x′ ∈ Fm and y′ ∈ TFm or
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(3) x′, y′ ∈ TFm.

Redefining x′ and y′ as follows:

(1) x′ = x and y′ = y with x, y ∈ Fm,
(2) x′ = x and y′ = Ty with x, y ∈ Fm,
(3) x′ = Tx and y′ = Ty with x, y ∈ Fm.

We show that in any case

δsm+1 − ε < rs(F ).

Case 1. By the definition of δsm and the induction
hypothesis, we obtain

δsm+1− ε < ∥0, x− y, y−x∥ ≤ δsm+1 ≤ rs(F ) (7)

and so δsm+1 − ε < rs(F ).

Case 2. We obtain

δsm+1 − ε < ∥0, x− Ty, Ty − x∥

with x, y ∈ Fm. Then by the definition of Fm, we
have x, y ∈ conv(Fm−1 ∪ TFm−1) and so there is
a finite index set I such that x =

∑
i∈I

αixi, with∑
i∈I

αi = 1, αi ≥ 0 and xi ∈ Fm−1 ∪ TFm−1 for

any i ∈ I. We can separate the set I in two dis-
joint subsets, I = I1 ∪ I2, such that if i ∈ I1 then
xi ∈ Fm−1 and if i ∈ I2 then xi ∈ TFm−1.

Now redefining xi as xi = Txi with xi ∈ Fm−1,
we obtain

x =
∑
i∈I1

αixi +
∑
i∈I2

αiTxi.

Substituting in ∥0, x− Ty, Ty − x∥, we get

∥0, x− Ty, Ty − x∥ ≤
∑
i∈I1

αi∥0, xi − Ty, Ty − xi∥

+
∑
i∈I2

αi∥0, Txi − Ty, Ty − Txi∥.

(8)

Applying the condition (NS25) to ∥0, Txi −
Ty, Ty − Txi∥, we have

∥0, Txi − Ty, Ty − Txi∥

< max

 ∥0, xi − y, y − xi∥, ∥0, xi − Txi, Txi − xi∥,
∥0, y − Ty, Ty − y∥, ∥0, xi − Ty, Ty − xi∥,

∥0, Txi − y, y − Txi∥

 .

(9)

As xi ∈ Fm−1, Txi, y ∈ Fm, we have

∥0, xi − y, y − xi∥ ≤ rs(F ),
∥0, xi − Txi, Txi − xi∥ ≤ rs(F ),
∥0, Txi − y, y − Txi∥ ≤ rs(F )

and replacing in (9), we obtain

∥0, Txi − Ty, Ty − Txi∥

< max

{
rs(F ),

∥0, y − Ty, Ty − y∥, ∥0, xi − Ty, Ty − xi∥

}
.

Let us subdivide the index set I2 in three disjoint
subsets I2 = I12 ∪ I22 ∪ I32 such that

I12 = {i ∈ I2 : ∥0, Txi − Ty, Ty − Txi∥ < rs(F )},

I22 =

{
i ∈ I2 : ∥0, Txi − Ty, Ty − Txi∥

< ∥0, xi − Ty, Ty − xi∥

}
,

I32 =

{
i ∈ I2 : ∥0, Txi − Ty, Ty − Txi∥

< ∥0, y − Ty, Ty − y∥

}
.

Then using (8), we have

∥0, x− Ty, Ty − x∥ ≤
∑

i∈I1∪I22

αi∥0, xi − Ty, Ty − xi∥

+
∑
i∈I12

αir
s(F ) +

∑
i∈I32

αi∥0, y − Ty, Ty − y∥.

(10)

Redefining I1, I2 and I3

I1 = I1 ∪ I22 , I2 = I12 and I3 = I32 . (11)

Then we have I = I1∪ I2∪ I3, with Ij ∩ Ik = ∅. If
j ̸= k and

∑
i∈I

αi = 1 then using (10), it becomes

∥0, x− Ty, Ty − x∥ ≤
∑
i∈I1

αi∥0, xi − Ty, Ty − xi∥

+
∑
i∈I2

αir
s(F ) +

∑
i∈I3

αi∥0, y − Ty, Ty − y∥.

(12)

If A0 =
∑
i∈I2

αi and B0 =
∑
i∈I3

αi with
∑
i∈I1

αi+A0+

B0 = 1. Using (12), we have

∥0, x− Ty, Ty − x∥ ≤
∑
i∈I1

αi∥0, xi − Ty, Ty − xi∥

+A0r
s(F ) +B0∥0, y − Ty, Ty − y∥.

(13)

For each i ∈ I1, xi ∈ Fm−1 = conv(Fm−2 ∪
TFm−2), there is a finite set Ji, such that

xi =
∑
j∈Ji

βj
i x

j
i , (14)
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with xji ∈ Fm−2 ∪ TFm−2, β
j
i ≥ 0 and

∑
j∈Ji

βj
i = 1

for any j ∈ Ji. Let Ji = J1
i ∪J2

i , with J1
i ∩J2

i = ∅
such that

xi =
∑
j∈J1

i

βj
i x

j
i +

∑
j∈J2

i

βj
i Tx

j
i . (15)

For each i ∈ I1 we have

∥0, xi − Ty, Ty − xi∥
≤
∑
j∈J1

i

βj
i ∥0, x

j
i − Ty, Ty − xji∥

+
∑
j∈J2

i

βj
i ∥0, Tx

j
i − Ty, Ty − Txji∥.

(16)

Applying the condition (NS25) to ∥0, Txji −
Ty, Ty − Txji∥, we have

∥0, Txji − Ty, Ty − Txji∥ (17)

< max



∥0, xji − y, y − xji∥,
∥0, Txji − xji , x

j
i − Txji∥,

∥0, y − Ty, Ty − y∥,
∥0, Txji − y, y − Txji∥,
∥0, xji − Ty, Ty − xji∥


.

Since xji ∈ Fm−2 and y ∈ Fm, we have

∥0, xji − y, y − xji∥ ≤ rs(F ),

∥0, Txji − xji , x
j
i − Txji∥ ≤ rs(F ),

∥0, Txji − y, y − Txji∥ ≤ rs(F ).

By (17), we obtain

∥0, Txji − Ty, Ty − Txji∥

< max

{
rs(F ), ∥0, y − Ty, Ty − y∥,

∥0, xji − Ty, Ty − xji∥

}
.

Let J2
i = J21

i ∪ J22
i ∪ J23

i with J2k
i ∩ J

2p
i = ∅ such

that

J21
i =

{
j ∈ J2

i : ∥0, Txji − Ty, Ty − Txji∥
< rs(F )

}
,

J22
i =

{
j ∈ J2

i : ∥0, Txji − Ty, Ty − Txji∥
< ∥0, y − Ty, Ty − y∥

}
,

J23
i =

{
j ∈ J2

i : ∥0, Txji − Ty, Ty − Txji∥
< ∥0, xji − Ty, Ty − xji∥

}
.

Using (16), we obtain

∥0, xi − Ty, Ty − xi∥
≤

∑
j∈J1

i ∪J
23
i

βj
i ∥0, x

j
i − Ty, Ty − xji∥

+
∑

i∈J21
i

βj
i r

s(F ) +
∑

i∈J22
i

βj
i ∥0, y − Ty, Ty − y∥.

(18)

Let us denote by

J i
1 = J1

i ∪ J23
i , J i

2 = J22
i and J i

3 = J21
i .

Then using (18), we have

∥0, xi − Ty, Ty − xi∥ ≤
∑
j∈Ji

1

βj
i ∥0, x

j
i − Ty, Ty − xji∥

+
∑
i∈Ji

3

βj
i r

s(F ) +
∑
i∈Ji

2

βj
i ∥0, y − Ty, Ty − y∥.

(19)

If Ai =
∑
i∈Ji

3

βj
i and Bi =

∑
i∈Ji

2

βj
i with

∑
j∈Ji

1

βj
i +

Ai +Bi = 1. Using (19), we obtain

∥0, xi − Ty, Ty − xi∥ ≤
∑
j∈Ji

1

βj
i ∥0, x

j
i − Ty, Ty − xji∥

+Air
s(F ) +Bi∥0, y − Ty, Ty − y∥.

(20)

Using (13) and ∥0, xi − Ty, Ty − xi∥ by (20), we
obtain

∥0, x− Ty, Ty − x∥ ≤
∑
i∈I1

αi
∑
j∈Ji

1

βj
i ∥0, x

j
i − Ty, Ty − xji∥

+

[∑
i∈I1

αiAi +A0

]
rs(F )

+

[∑
i∈I1

αiBi +B0

]
∥0, y − Ty, Ty − y∥.

Let A1 =
∑
i∈I1

αiAi and B1 =
∑
i∈I1

αiBi. Then we

have

∥0, x− Ty, Ty − x∥ ≤
∑
i∈I1

αi
∑
j∈Ji

1

βj
i ∥0, x

j
i − Ty, Ty − xji∥

+(A1 +A0)r
s(F ) + (B1 +B0)∥0, y − Ty, Ty − y∥.

(21)

We note that

∑
i∈I1

αi

∑
j∈Ji

1

βj
i +
∑
i∈I1

αiAi+A0+
∑
i∈I1

αiBi+B0 = 1.

Let us take K =
⋃
i∈I1

( ⋃
j∈Ji

1

j

)
and denote the

scalars by ξk. To each k relative to the pair (i, j),

xji will be denoted by xk.

Using (21), we obtain

∥0, x− Ty, Ty − x∥ ≤
∑
k∈K

ξk∥0, xk − Ty, Ty − xk∥

+(A1 +A0)r
s(F ) + (B1 +B0)∥0, y − Ty, Ty − y∥,
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where
∑
k∈K

ξk + A1 + A0 + B1 + B0 = 1 and

xk ∈ Fm−2.

Repeating this process which is done for xk, we
get

∥0, x− Ty, Ty − x∥ ≤
∑
p∈P

γp∥0, xp − Ty, Ty − xp∥

+
m−1∑
k=0

Akr
s(F ) +

m−1∑
k=0

Bk∥0, y − Ty, Ty − y∥,

(22)

where
∑
p∈P

γp +
m−1∑
i=0

(Ai + Bi) = 1 and xp ∈ F1 =

Cs(F ).

Hence ∥0, xp − Ty, Ty − xp∥ ≤ rs(F ) and using
(22), we obtain

∥0, x− Ty, Ty − x∥ ≤
m−1∑
k=0

Bk∥0, y − Ty, Ty − y∥

+

(∑
p∈P

γp +
m−1∑
k=0

Ak

)
rs(F ).

(23)

Let us turn to ∥0, y − Ty, Ty − y∥. Since y ∈
conv(Fm−1 ∪ TFm−1), we have y =

∑
i∈I

αiyi with∑
i∈I

αi = 1, yi ∈ Fm−1 ∪ TFm−1 and αi ≥ 0 for all

i ∈ I. Let I = I1∪I2 such that I1∩I2 = ∅. If i ∈ I1
then yi ∈ Fm−1 and if i ∈ I2 then yi ∈ TFm−1.
Let yi = Tyi. Then we can write

y =
∑
i∈I1

αiyi +
∑
i∈I2

αiTyi,

with yi ∈ Fm−1.

Substituting in ∥0, y − Ty, Ty − y∥ we get

∥0, y − Ty, Ty − y∥ ≤
∑
i∈I1

αi∥0, yi − Ty, Ty − yi∥

+
∑
i∈I2

αi∥0, T yi − Ty, Ty − Tyi∥.

(24)

Using the condition (NS25), we obtain

∥0, Tyi − Ty, Ty − Tyi∥ (25)

< max


∥0, yi − y, y − yi∥,

∥0, yi − Tyi, Tyi − yi∥,
∥0, y − Ty, Ty − y∥,
∥0, yi − Ty, Ty − yi∥,
∥0, T yi − y, y − Tyi∥

 .

Since yi ∈ Fm−1, y ∈ Fm, we have

∥0, yi − y, y − yi∥ ≤ rs(F ),
∥0, yi − Tyi, Tyi − yi∥ ≤ rs(F ),
∥0, T yi − y, y − Tyi∥ ≤ rs(F ).

Using (25), we obtain

∥0, Tyi − Ty, Ty − Tyi∥

< max

{
rs(F ), ∥0, y − Ty, Ty − y∥,

∥0, yi − Ty, Ty − yi∥

}
.

Redefining the index set I2 = I12 ∪ I22 ∪ I32 with

I12 =

{
i ∈ I2 : ∥0, T yi − Ty, Ty − Tyi∥

< rs(F )

}
,

I22 =

{
i ∈ I2 : ∥0, T yi − Ty, Ty − Tyi∥

< ∥0, y − Ty, Ty − y∥

}
,

I32 =

{
i ∈ I2 : ∥0, T yi − Ty, Ty − Tyi∥

< ∥0, yi − Ty, Ty − yi∥

}
.

Now using (24), we get

∥0, y − Ty, Ty − y∥ ≤
∑

i∈I1∪I32

αi∥0, yi − Ty, Ty − yi∥

+
∑
i∈I12

αir
s(F ) +

∑
i∈I22

αi∥0, y − Ty, Ty − y∥.

(26)

We note that if
∑
i∈I22

αi = 1 then

∥0, y − Ty, Ty − y∥ ≤ ∥0, T yi − Ty, Ty − Tyi∥
< ∥0, y − Ty, Ty − y∥,

which is a contradiction.

Then
∑
i∈I22

αi < 1 and using (26), we obtain

∥0, y − Ty, Ty − y∥
≤

∑
i∈I1∪I32

αi

1−
∑
i∈I22

αi
∥0, yi − Ty, Ty − yi∥

+
∑
i∈I12

αi

1−
∑
i∈I22

αi
rs(F ),

(27)

with
∑

i∈I1∪I32

αi

1−
∑
i∈I22

αi
+
∑
i∈I12

αi

1−
∑
i∈I22

αi
= 1.

Let I1 = I1 ∪ I32 , I2 = I12 and βi =
αi

1−
∑
i∈I22

αi
.

Using (27), we obtain
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∥0, y − Ty, Ty − y∥ ≤
∑
i∈I1

βi∥0, yi − Ty, Ty − yi∥

+
∑
i∈I2

βir
s(F ). (28)

If A0 =
∑
i∈I2

βi then using (28), we have

∥0, y − Ty, Ty − y∥ ≤
∑
i∈I1

βi∥0, yi − Ty, Ty − yi∥

+A0r
s(F ), (29)

with
∑
i∈I1

βi + A0 = 1 and yi ∈ Fm−1 =

conv(Fm−2 ∪ TFm−2).

For each i ∈ I1,

yi =
∑
j∈J1

i

γji y
j
i +

∑
j∈J2

i

γji Ty
j
i ,

with yji ∈ Fm−2 and
∑

j∈J1
i ∪J2

i

γji = 1. So we obtain

∥0, yi − Ty, Ty − yi∥ ≤
∑
j∈J1

i

γji ∥0, y
j
i − Ty, Ty − yji ∥

+
∑
j∈J2

i

γji ∥0, T y
j
i − Ty, Ty − Tyji ∥.

(30)

Using the condition (NS25), we have

∥0, T yji − Ty, Ty − Tyji ∥

< max



∥0, yji − y, y − yji ∥,
∥0, Tyji − yji , y

j
i − Tyji ∥,

∥0, y − Ty, Ty − y∥,
∥0, Tyji − y, y − Tyji ∥,
∥0, yji − Ty, Ty − yji ∥


.

Since yji ∈ Fm−2, Ty
j
i ∈ Fm−1 and y ∈ Fm, we

can write

∥0, yji − y, y − yji ∥ ≤ rs(F ),

∥0, T yji − yji , y
j
i − Tyji ∥ ≤ rs(F ),

∥0, T yji − y, y − Tyji ∥ ≤ rs(F )

and

∥0, T yji − Ty, Ty − Tyji ∥

< max

{
rs(F ), ∥0, y − Ty, Ty − y∥,

∥0, yji − Ty, Ty − yji ∥

}
.

Let J2
i be the union of the disjoint sets J2

i =

J21
i ∪ J22

i ∪ J23
i such that

J21
i =

{
j ∈ J2

i : ∥0, Tyji − Ty, Ty − Tyji ∥
< ∥0, yji − Ty, Ty − yji ∥

}
,

J22
i =

{
j ∈ J2

i : ∥0, Tyji − Ty, Ty − Tyji ∥
< rs(F )

}
,

J23
i =

{
j ∈ J2

i : ∥0, Tyji − Ty, Ty − Tyji ∥
< ∥0, y − Ty, Ty − y∥

}
.

Using (30), we obtain

∥0, yi − Ty, Ty − yi∥
≤

∑
j∈J1

i ∪J
21
i

γji ∥0, y
j
i − Ty, Ty − yji ∥

+
∑

j∈J22
i

γji r
s(F ) +

∑
j∈J23

i

γji ∥0, y − Ty, Ty − y∥.

(31)

Now redefine the index sets J1
i = J1

i ∪ J21
i , J2

i =

J22
i , J3

i = J23
i and using (31) we can write

∥0, yi − Ty, Ty − yi∥
≤
∑
j∈J1

i

γji ∥0, y
j
i − Ty, Ty − yji ∥

+
∑
j∈J2

i

γji r
s(F ) +

∑
j∈J3

i

γji ∥0, y − Ty, Ty − y∥,

with
∑
j∈J1

i

γji +
∑
j∈J2

i

γji +
∑
j∈J3

i

γji = 1.

Using the (29), we obtain

∥0, y − Ty, Ty − y∥
≤
∑
i∈I1

βi
∑
j∈J1

i

γji ∥0, y
j
i − Ty, Ty − yji ∥

+
∑
i∈I1

βi
∑
j∈J3

i

γji ∥0, y − Ty, Ty − y∥

+

[∑
i∈I1

βi
∑
j∈J2

i

γji +A0

]
rs(F ).

(32)

If
∑
i∈I1

βi
∑
j∈J3

i

γji = 1 we have

∥0, y − Ty, Ty − y∥ < ∥0, y − Ty, Ty − y∥,

which is a contradiction.

Hence
∑
i∈I1

βi
∑
j∈J3

i

γji < 1 and using (32), we obtain
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∥0, y − Ty, Ty − y∥

≤

∑
i∈I1

βi
∑
j∈J1

i

γji

1−
∑
i∈I1

βi
∑
j∈J3

i

γji
∥0, yji − Ty, Ty − yji ∥

+

∑
i∈I1

βi
∑
j∈J2

i

γji +A0

1−
∑
i∈I1

βi
∑
j∈J3

i

γji
rs(F ),

(33)

with

∑
i∈I1

βi
∑
j∈J1

i

γji

1−
∑
i∈I1

βi
∑
j∈J3

i

γji
+

∑
i∈I1

βi
∑
j∈J2

i

γji +A0

1−
∑
i∈I1

βi
∑
j∈J3

i

γji
= 1.

Let A1 =

∑
i∈I1

βi
∑
j∈J2

i

γji +A0

1−
∑
i∈I1

βi
∑
j∈J3

i

γji
and denote the in-

dex set by K =
⋃
i∈I1

( ⋃
j∈J1

i

j

)
, write ζk for k ∈ K

relative to (i, j), that is

ζk =

∑
i∈I1

βi
∑
j∈J2

i

γji

1−
∑
i∈I1

βi
∑
j∈J3

i

γji
.

Also we write yk for yji . Then using (33), we ob-
tain

∥0, y − Ty, Ty − y∥ ≤
∑
k∈K

ζk∥0, yk − Ty, Ty − yk∥

+ (A1 +A0)r
s(F ),

with
∑
k∈K

ζk +A1 +A0 = 1 and yk ∈ Fm−2.

Repeating this process we get

∥0, y − Ty, Ty − y∥ ≤
∑
p∈P

λp∥0, yp − Ty, Ty − yp∥

+

m−1∑
k=0

Akr
s(F ),

where yp ∈ F1 and
∑
p∈P

λp +
m−1∑
k=0

Ak = 1.

Then ∥0, yp − Ty, Ty − yp∥ ≤ rs(F ) and

∥0, y − Ty, Ty − y∥ ≤

∑
p∈P

λp +
m−1∑
k=0

Ak

 rs(F )

= rs(F ).

Using (23), we get

∥0, x− Ty, Ty − x∥

≤

m−1∑
k=0

Bk +
∑
p∈P

γp +
m−1∑
k=0

Ak

 rs(F ),

with
m−1∑
k=0

Bk +
∑
p∈P

γp +
m−1∑
k=0

Ak = 1.

Consequently, we obtain ∥0, x − Ty, Ty − x∥ ≤
rs(F ) and so

δsm+1 − ε < ∥0, x− Ty, Ty − x∥ ≤ rs(F ).

Case 3. For x, y ∈ Fm, we have

δsm+1 − ε < ∥0, Tx− Ty, Ty − Tx∥

< max


∥0, x− y, y − x∥,

∥0, Tx− x, x− Tx∥,
∥0, y − Ty, Ty − y∥,
∥0, x− Ty, Ty − x∥,
∥0, Tx− y, y − Tx∥


(34)

and repeating what has been done in Case 2, we
get

δsm+1 − ε < ∥0, Tx− Ty, Ty − Tx∥ ≤ rs(F ).

In all three cases we have δsm+1 − ε < rs(F ). If ε
tends to 0 we get δsm+1 ≤ rs(F ).

Let F∞ =
⋃
n∈N

Fn. Then F∞ is nonempty because

Cs(F ) ̸= ∅. Since Fk ⊆ Fk+1, we obtain

δs(F∞) = lim
k→∞

δs(Fk) ≤ rs(F ).

As Fk ⊂ F , F∞ ⊆ F and so δs(F∞) ≤ rs(F ).

Using the S-normal structure of F we have
rs(F ) < δs(F ) and δs(F∞) < δs(F ). So F∞ must
be a proper subset of F . We obtain that F∞ is
convex and TF∞ ⊆ F∞.

Let M = convF∞ = F∞, its diameter is the same
as F∞. So we have

δs(M) ≤ rs(F ) < δs(F )

and M is closed, nonempty and convex proper
subset of F . Since T is continuous then M is T -
invariant and

TM = TF∞ ⊆ TF∞ ⊆ F∞ = M.
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So M ∈ A and M ⫋ F contradicting the min-
imality of F . Hence, it should be δs(F ) = 0.
Consequently, F has a unique fixed point under
T . □

4. Some comparisons on S-normed
spaces

In [12], the present authors defined Rhoades’ con-
dition (S25) using the notion of an S-metric.
Also, they investigated relationships between the
conditions (S25) and (R25) in [13].

In this section, we determine the relationships be-
tween the conditions (S25) (resp. (NR25)) and
(NS25).

At first, we recall the Rhoades’ condition on
normed spaces as follows [17]:

Let (X, ∥.∥) be a Banach space and T be a self-
mapping of X.

(NR25) ∥Tx− Ty∥ < max

 ∥x− y∥, ∥x− Tx∥,
∥y − Ty∥, ∥x− Ty∥,

∥y − Tx∥

 ,

for each x, y ∈ X, x ̸= y.

Now we give the relationship between (S25) and
(NS25) in the following proposition.

Proposition 7. Let (X, ∥., ., .∥) be an S-Banach
space, (X,S∥.∥) be the S-metric space obtained
by the S-metric generated by ∥., ., .∥ and T be a
self-mapping of X. If T satisfies the condition
(NS25) then T satisfies the condition (S25).

Proof. Assume that T satisfies the condition
(NS25). Using the condition (NS25), we have

S∥.∥(Tx, Tx, Ty) = ∥Tx− Tx, Tx− Ty, Ty − Tx∥
= ∥0, Tx− Ty, Ty − Tx∥

< max

 ∥0, x− y, y − x∥, ∥0, Tx− x, x− Tx∥,
∥0, Ty − y, y − Ty∥, ∥0, T y − x, x− Ty∥,

∥0, Tx− y, y − Tx∥


= max


S∥.∥(x, x, y), S∥.∥(Tx, Tx, x),

S∥.∥(Ty, Ty, y), S∥.∥(Ty, Ty, x),
S∥.∥(Tx, Tx, y)


and so the condition (S25) is satisfied by T on
(X,S∥.∥). □

Now, we give the relationship between the condi-
tions (NR25) and (NS25) in the following propo-
sition.

Proposition 8. Let (X, ∥.∥) be a Banach space,
(X, ∥., ., .∥) be an S-normed space obtained by the
S-norm generated by ∥.∥ and T be a self-mapping
of X. If T satisfies the condition (NR25) then T
satisfies the condition (NS25).

Proof. Let T satisfies the condition (NR25).
Using the conditions (NR25) and (N3), we have

∥0, Tx− Ty, Ty − Tx∥
= ∥0∥+ ∥Tx− Ty∥+ ∥Ty − Tx∥
= 2∥Tx− Ty∥

< 2max

{
∥x− y∥, ∥x− Tx∥,

∥y − Ty∥, ∥x− Ty∥, ∥y − Tx∥

}
= max

{
2∥x− y∥, 2∥x− Tx∥,

2∥y − Ty∥, 2∥x− Ty∥, 2∥y − Tx∥

}

= max


∥x− y∥+ ∥y − x∥,

∥x− Tx∥+ ∥Tx− x∥,
∥y − Ty∥+ ∥Ty − y∥,
∥x− Ty∥+ ∥Ty − x∥,
∥y − Tx∥+ ∥Tx− y∥


= max


∥0, x− y, y − x∥,

∥0, Tx− x, x− Tx∥,
∥0, Ty − y, y − Ty∥,
∥0, Ty − x, x− Ty∥,
∥0, Tx− y, y − Tx∥


and so the condition (NS25) is satisfied. □

Finally, we give the relationship between Theorem
1 and the following theorem.

Theorem 2. [17] Let X be a reflexive Banach
space and A be a nonempty, closed, bounded and
convex subset of X, having normal structure. If
T : A → A is a continuous self-mapping satisfy-
ing the condition (NR25) then T has a unique
fixed point in A.

Theorem 1 and Theorem 2 coincide when X is an
S-Banach space obtained by the S-norm gener-
ated by ∥.∥. Clearly, Theorem 1 is a generaliza-
tion of Theorem 2 as we have seen in Section 2
that there are S-norms which are not generated
by any norm.
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