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Abstract
Chaotic systems depict complex dynamics, thanks to their nonlinear behaviors. With recent studies on fractional-order

nonlinear systems, it is deduced that fractional-order analysis of a chaotic system enriches its dynamic behavior. Therefore,

the investigation of the chaotic behavior of a 4D memristive Chen system is aimed in this study by taking the order of the

system as fractional. The nonlinear behavior of the system is observed numerically by comparing the fractional-order

bifurcation diagrams and Lyapunov Exponents Spectra with 2D phase portraits. Based on these analyses, two different

fractional orders (i.e., q = 0.948 and q = 0.97) are determined where the 4D memristive system shows chaotic behavior.

Furthermore, a single state fractional-order sliding mode controller (FOSMC) is designed to maintain the states of the

fractional-order memristive chaotic system on the equilibrium points. Then, control method results are obtained by both

numerical simulations and different illustrative experiments of microcontroller-based realization. As expected, voltage

outputs of the microcontroller-based realization are in good agreement with the time series of numerical simulations.
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1. Introduction

In the last decade, enrichments of the dynamical behavior of
nonlinear systems by performing fractional-order analysis
have become a phenomenon (Xiang-Rong et al., 2008;
Yang and Wang, 2021). The chaos that can be observed in
many nonlinear systems depicts more complex behavior
with fractional-order analysis (Ahmad and Sprott, 2003; Liu
et al., 2021). Recently, many researchers have been in-
terested in the study of fractional-order chaotic systems
(Akgül et al., 2022; Chen et al., 2013; Li et al., 2020; Peng
et al., 2020; Trikha et al., 2022; Zhang and Zhou, 2007). The
main reason for this attraction lies in the fact that some
differential systems’ behavior varies chaotically in the case
of particular fractional orders. Even if parameters of the
nonlinear system are chosen appropriate as original form,
the fractional order parameter affects the behavior of the
system directly. Therefore, the well-known chaotic systems
were studied in terms of complexity by means of fractional
degree analysis, such as Lorenz system (Mathiyalagan et al.,
2015), Lü system (Lu, 2006), Chua’s system (Hartley et al.,
1995), and Chen system (Lu and Chen, 2006).

Among the classical chaotic systems, Chua’s system in-
volved the memristor as the fourth passive circuit element in
1971 (Chua, 1971). Thanks to its low power consumption and
nonlinearity, memristors have become the focus of attention of
researchers (Itoh and Chua, 2008; Strukov et al., 2008).

Therefore, there are many memristor-based chaotic systems in
the literature, such as the simplest chaotic circuit (Muthuswamy
and Chua, 2010), a simplememristive circuit (Bao et al., 2011),
a physical circuit that employs the four passive circuit elements
(Muthuswamy, 2010), and a hyperchaotic jerk system (Wang
et al., 2017). Furthermore, the fact that chaotic systems are
based on flux-controlled memristor makes this type of circuit
easier to implement (Bao et al., 2018; Gokyildirim, Yesil and
Babacan, 2022a). Recently, researchers have investigated
fractional-order memristive systems with a single unstable
equilibrium point (Rahman et al., 2021), bursting and boosting
phenomena (Borah and Roy, 2021), and multiple coexisting
analyses (Hu et al., 2021). However, most of the studied
fractional-order chaotic systems do not provide dynamic
analyses which include bifurcation diagrams and Lyapunov
exponents. Furthermore, implementation of fractional-order
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chaotic systems is complicated via its memory index. In this
regards, digital design of fractional order chaotic system arise
several advantages such as cost-effective and easy applicability.
Despite the limited memory of microcontrollers, a high per-
formance of integration of fractional-order chaotic system can
be realized. The superiority of the proposed application lies on
employing the STM32 processor which is powerful, low-cost,
low-weight, and being programmable withMATLAB program
(Gokyildirim et al., 2023).When some type ofmicrocontrollers
are utilized in implementing fractional-order chaotic system
(Clemente-López et al., 2022), the problem of controlling
chaotic system by applying small time-dependent pertur-
bations becomes more complicated (Emiroglu et al., 2022).
Instead of these types of microcontrollers, STM32 Nucleo
board is employed to keep the states of fractional-order 4D
memristive system on the equilibrium points in this study.

In 1990, the OGY method was developed to realize the
control of chaos (Ott et al., 1990). Later, researchers de-
veloped many methods to control chaotic behavior, such as
active (Agrawal et al., 2012), passive (Kuntanapreeda and
Sangpet, 2012), time-delay feedback (Ge et al., 2014),
linear feedback (Sun et al., 2009), sliding-mode (Li and Liu,
2010), nonlinear control (Boubakir and Labiod, 2022; Din
et al., 2021; Kizmaz et al., 2019), and linear quadratic
regulator-based control (Alexander et al., 2023). Among the
nonlinear control methods, sliding mode control (SMC) has
superb advantages, such as being robust against dis-
turbances, sensor noises, and ensuring well-tracking dy-
namics. In this context, several techniques based on SMC
have been adopted for the control of a variety of chaotic
systems. Roopaei et al. (2010) implemented an adaptive
SMC to control a class of unknown chaotic systems. Li et al.
(2011) employed a dynamic sliding surface and formed
a chatter-free SMC to control a chaotic system with un-
certainties. Fuzzy SMC (Ramakrishnan et al., 2022) and
LMI-based SMC (Wang et al., 2009) techniques were
utilized to drive the state of nonlinear chaotic systems to
defined equilibrium points in the state space. Moreover,
further developments in fractional calculus have led some
researchers to employ FOSMC in an integer-order chaotic
system (Dadras and Momeni, 2012), classical SMC in
a fractional-order chaotic system (Yin et al., 2012), or
FOSMC in fractional-order chaotic systems (Yang and Liu,
2013; Balasubramaniam and Muthukumar et al., 2015).
Most of the given investigations in the literature prove the
accuracy of the proposed FOSMC numerically, whether the
chaotic system is an integer order or not. In particular, the
aforementioned FOSMC studies contain a multi-state
controller that requires more computational costs in
microcontroller-based applications. Compared to existing
studies, the proposed control method is designed as a single-
state controller to avoid complexity in computation. The
superiority of the proposed control structure over the re-
ported methods in the literature is that it forces all states to
the equilibrium points by controlling a single-state of the

fractional order chaotic system with a good disturbance
rejection capability.

To the authors’ knowledge, there is a lack of studies in
the literature that focus on fractional-order Chen system
based on memristor. Furthermore, the complexity of the
chaotic system results in difficult to design an appropriate
controller. Therefore, the significant features of this paper
are reported in terms of contributions as follows:

• Fractional order analyses of the 4D memristive Chen
system are performed via 2D phase portraits, Lyapunov
spectra, and bifurcation diagrams.

• A significant single-state SMC is designed with a frac-
tional-order sliding surface to control a fractional-order
memristive chaotic oscillator. Moreover, the stability of
FOSMC is proven with Lyapunov theorem.

• The control of the fractional-order memristive chaotic
oscillator is realized experimentally by means of an
STM32 Nucleo which is a low-cost, low-weight
microcontroller.

This paper is organized as follows: differential equations
of the fractional-order memristive chaotic system are de-
scribed as well as its time series and phase planes are given
in the second section. Fractional-order bifurcation diagrams
and Lyapunov exponents are calculated in the third section.
In the fourth section, electronic circuit of fractional-order
memristive chaotic oscillator is designed. FOSMC is
synthesized to investigate the control of the fractional-order
system in fifth section. Numerical analyses and microcontroller-
based experimental realization of the fractional-order controller
are explained and realized in the sixth section. Finally, the last
section provides a brief discussion and the conclusion.

2. Fractional-order 4D system based on
memristor

The nonlinear equations of the memristor-based 4D Chen
system are described below (Gokyildirim et al., 2022b):

_x ¼ αðykðwþ dÞ � xÞ
_y ¼ ðγ� αÞx� xzþ γy
_z ¼ xy� βz
_w ¼ y

(1)

where k(w + d) is the memductance equation, which is the
ratio of voltage to current, and x, y, z, and u are the state
variables. Figure 1 depicts the 2D phase planes of system
(1) in the case of positive constant parameters, which are α =
4, β = 0.5, γ = 3, k = 0.05, and d = 1 for x(0) = 0, y(0) = 1,
z(0) = 0, and w(0) = 0.

We can perform fractional-order analyses to enrich the
dynamical complexity of the four-dimensional memristive
system. For this aim, the differential equations of fractional-
order form of system (1) can be written as follows:
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�Dq1x ¼ αðykðwþ dÞ � xÞ�Dq2y ¼ ðγ� αÞx� xzþ γy�Dq3z ¼ xy� βz�Dq4w ¼ y

(2)

where �Dqi describes the fractional-order operator. It can be
used as a non-integer differentiator or integrator by
choosing the order qi as positive or negative. Both
fractional-order operators have the advantage of enhancing
the characterization of the dynamic system more precisely
(Han, 2021). The fractional-order operator can be de-
termined via Grünwald–Letnikov (GL) definition as follows
(Ilten, 2022):

0D
q
t f ðxÞ ¼ lim

h→ 0

1

hq
X½t=h�
k¼0

ð�1Þk
�
q
k

�
f ðt � khÞ (3)

where [.] and h are the integer part and step size, re-
spectively (Demirtas et al., 2019). The derivative order of
4D memristive system is dealt here as fractional-order,
where 0 < qi ≤ 1 (i = 1,2,3,4). The presence of the non-
integer order integrator makes the fractional-order system
(1) more flexible compared with the integer-order.

The MATLAB/Simulink program has multiple tools that
are employed for fractional calculation, such as FOMCON,
fid, and ninteger. The FOMCON toolbox uses the GL def-
inition. It has a discrete integrator in particular and can be
precisely implemented in digital signal processors. There-
fore, it is adopted here to be used in implementing fractional-
order chaotic systems. Using the FOMCON toolbox, the
fractional-order 4D memristive system’s time series, 2D and

3D phase portraits forq1 = q2 = q3 = q4 = q = 0.97 are found as
illustrated in Figures 2, 3 and 4, respectively.

3. Lyapunov spectra and bifurcation
diagram

In this section, the dynamic behavior of the 4D memristive
system is investigated. For this aim, the Lyapunov ex-
ponents and bifurcation diagram are calculated for the
varying fractional-order values of the system (2) (Messias
et al., 2022). Initially, it is necessary to examine the effect of
variations in the fractional-order parameter q on the system.
Figures 5(a) and 5(b) depict Lyapunov spectra and bi-
furcation diagram for q 2 [0.9-1], respectively.

According to Figures 5(a) and 5(b), the fractional-
order system shows some periodic oscillations for
fractional-order q 2 ([0.913, 0.917][ [0.92, 0.923][
[0.931–-0.943]). Additionally, the fractional-order sys-
tem is mostly in the chaos region when the value of q is
increased from 0.944 to 0.971. Figure 5(b) demonstrates
that the system depicts robust chaos for q 2 [0.974, 1].
According to the consistent results between the Lyapunov
spectra and the bifurcation diagram, system (2) generates
rich dynamic behaviors for varying values of fractional
order q. Note that, the system does not represent chaotic
behavior when the fractional-order is smaller than 0.905
(q 2 [0, 0.905]). Nevertheless, small values of fractional
order require more memory index, particularly in mi-
crocontroller applications (Du et al., 2013). This memory
may not be available in microcontrollers for such an

Figure 1. Phase portraits of system (1).
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implementation of complex systems. Considering
Figures 5(a) and 5(b), the 2D phase portraits obtained for
different q values of the fractional-order system are
shown in Figure 5(c). It is clearly seen from Figure 5 that
the 2D phase portraits representing the system behavior
are compatible with the bifurcation diagram.

The effect of varying the memristor parameter k on
system (2) for a fixed fractional-order value is also in-
vestigated. According to Figure 5, the system shows
chaotic motion for fractional-order q equals to 0.948 or
0.97. In Figure 6, Lyapunov exponents and bifurcation
diagram are given for varying values of k when the
fractional order of the system is q = 0.948. Here, the
system is in chaos when k equals 0.05. Additionally, when
the fractional-order of the system is chosen as q = 0.97,
Lyapunov exponents and bifurcation diagram versus k are
obtained as shown in Figure 7. According to Figure 7(a), the
system shows chaotic behavior when k = 0.05. In the analyses

whose results are shown in Figures 6 and 7, the parameter
values are taken as α = 4, β = 0.5, γ = 3, d = 1 and initial
conditions are determined as x(0) = 0, y(0) = 1, z(0) = 0,
w(0) = 0. According to the simulation results in this
section, system (2) depicts chaotic behavior when
fractional-order q is equal to 0.948 or 0.97, and a con-
troller can be applied.

4. Electronic circuit of fractional-order
memristive chaotic oscillator

An electronic circuit of fractional-order memristive 4D
Chen system in OrCAD/PSpice program is designed in this
section. In circuit theory, a circuit with non-integer order
dynamics is called a fractance. Integer order systems can be
implemented with electrical circuits using standard com-
ponents that are easily available on the market. On the other
hand, a fractional-order system model requires specific

Figure 2. Time series of the memristor-based 4D fractional-order system for q = 0.97.
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resistance-capacitor (RC) circuits with fractals. The chain
fractance approach, which includes two serial RC pairs, is
used in this study. However, there are other approaches such
as RC domino ladder and RC binary tree besides chain
fractance in the literature (Yao et al., 2020). Figure 8
depicts the fractional-order integrator’s circuit schematic
for q = 0.97.

In order for the amplitudes of vx, vy, vz, and vw to be an
acceptable range, it is necessary to scale the state variables.
So, we rescale the state variables as x = vx/V, y = 4vy/V,
z = 8vz/V, w = 2vw/V (Gokyildirim et al., 2022a). Con-
sidering equation (2), Figure 9 shows the oscillator circuit
schematic of the fractional-order system. Simulation time
and maximum step size are 50 ms and 0.11 ms, respectively.
The DC power supply voltages are also selected as VP = -VN

= 18V. The circuit is simulated for the constant parameters
α = 4, β = 0.5, and γ = 3. The resistances and capacitance

values of fractional-order oscillator circuit are selected as
R1 = 100 kV, R2 = 20 kV, R3 = 1600 kV, R4 = 133.3 kV,
R5 = 800 kV, R6 = 80 kV, R7 = 200 kV, R8 = 500 kV, R9 =
25 kV, R10 = R11 = 10 kV, R12 = R14 = R16 = R18 = 2.83 V,
R13 = R15 = R17 = R19 = 34.838 MV, C1 = C3 = C5 = C7 =
1.49 nF, and C2 = C4 = C6 = C8 = 0.905 nF. The OrCAD/
PSpice simulation results of the oscillator circuit are de-
picted in Figure 10. The simulation results given in
Figure 10 are in good agreement with the theoretical results
of the phase portraits presented in Figure 3.

5. Control of memristor-based
fractional-order chaotic oscillator

This section investigates the design of FOSMC to stabilize
the fractional-order 4D memristive system on a predefined

Figure 3. Phase portraits of the memristor-based 4D fractional-order system for q = 0.97.

Figure 4. 3D phase portraits of the memristor-based 4D fractional-order system for q = 0.97.
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Figure 5. Spectra of Lyapunov exponents, bifurcation diagram versus varying fractional-order q and chaotic motions for pa-

rameters α = 4, β = 0.5, γ = 3, d = 1 and initial conditions x(0) = 0, y(0) = 1, z(0) = 0, w(0) = 0: (a) Lyapunov exponents for q 2 [0.9, 1],

(b) bifurcation diagram for q 2 [0.9, 1] versus y, (c) chaotic motions for q 2 [0.9, 1] when the simulation time t(s) 2 [100, 500].

Figure 6. Spectra of Lyapunov exponents and bifurcation diagram versus varying memristor parameter k for fractional-order q = 0.948:

(a) Lyapunov exponents for k 2 [0.02, 0.2] (b) bifurcation diagram for k 2 [0.02, 0.2] versus y.
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equilibrium point. Since a control signal u is inserted
into system (2), the state equations become as given in
equation (4).

�Dq1x ¼ αðkðwþ dÞy� xÞ,�Dq2y ¼ ðγ� αÞx� xzþ γyþ u,�Dq3z ¼ xy� βz,�Dq4w ¼ y:

(4)

In this system, the error states vector becomes
½ex, ey, ez, ew�T ¼ ½x, y, z,w�T when the equilibrium is chosen
by E(0,0,0,0). By substituting equation (4) into the state vector,
dynamic equations are obtained as in equation (5) since the
fractional orders are taken as q = q1 = q2 = q3 = q4 = 1.

_ex ¼ α
�
kðew þ dÞey � ex

�
,

_ey ¼ ðγ� αÞex � exez þ γey þ u,
_ez ¼ exey � βez,
_ew ¼ ey:

(5)

Hereby, in the following subsection, FOSMC is designed to
ensure in a finite time that states of the fractional-order
chaotic system attain the proposed sliding surface.

5.1. Design of fractional order sliding mode
controller

The concept of the SMC has two main tasks as follows. It
forces the states of the system to the previously selected

surface and keeps the states in this region, respectively. To
ensure that the error converges to zero, a convenient sliding
surface must be determined. FOSMC has the superiorities of
being more flexible via its adjustable non-integer order in-
tegrator (Calgan, 2022). Properly selected fractional-order also
improves the closed-loop performance. Moreover, FOSMC
shows an optimum dynamic response while containing con-
ventional SMC benefits. Therefore, fractional-order sliding
surfaces are chosen as in this study. The sliding surface is
chosen as the fractional-order PI type which contains more
tuning parameters to be adjusted (Zhang et al., 2012).2

664
sx
sy
sz
sw

3
775 ¼

2
664
Kp1ex þ Ki1D

�λex
Kp2ey þ Ki2D

�λey
Kp3ez þ Ki3D

�λez
Kp4ew þ Ki4D

�λew

3
775 (6)

In equation (6), λ stands for the fractional order integral,
Kp illustrates proportional gain, Ki depicts integral gain, and
s demonstrates the sliding surface of each phase. Accord-
ingly, the total sliding surface ST ¼ sx þ sy þ sz þ sw is
selected to be zero to retain the states of the system on the
surface. Afterwards, the time derivation of ST can be taken
as follows:

_ST ¼ Kp1 _ex þKi1D
1�λex þ Kp2 _ey þ Ki2D

1�λey þ Kp3 _ez

þ Ki3D
1�λez þ Kp4 _ew þ Ki4D

1�λew

(7)

Substituting the state equations in equation (5) into
equation (7) results in

_ST ¼ Kp1

�
α
�
kðew þ dÞey � ex

��þ Ki1D
1�λex

þKp2

�ðγ� αÞex � exez þ γey þ u
�

þKi2D
1�λey þ Kp3

�
exey � βez

�
þKi3D

1�λez þ Kp4

�
ey
�þ Ki4D

1�λew

(8)

The equivalent control signal ueq is obtained as in
equation (9) when _ST ¼ 0:

Figure 7. Spectra of Lyapunov exponents and bifurcation diagram versus varying memristor parameter k for fractional-order q = 0.97:

(a) Lyapunov exponents for k 2 [0.02, 0.2] (b) bifurcation diagram for k 2 [0.02, 0.2] versus y.

Figure 8. The fractional-order integrator’s circuit schematic for

q = 0.97.
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ueq ¼ 1

Kp2

��Kp1

�
αkew þ αkdey � αex

�
� Kp2

�
γex � aex � exez þ γey

�� Kp3

�
exey � βez

�
� Kp4ey � Ki1D

1�λex � Ki2D
1�λey � Ki3D

1�λez

� Ki4D
1�λew

�
(9)

Hereby, the control signal is formed as u ¼ ueq þ usw. usw
defines the switching signal and can be written as follows:

usw ¼ �ηsgnðST Þ (10)

where η is a tunable constant. According to Lyapunov
theory ðV Þ, if η is determined properly, the designed ST
converges to zero. The designed control signal u guarantees
that error states in equation (5) are on the fractional-order
sliding surface ST ¼ 0: To ensure the stability of the de-
signed FOSMC, the Lyapunov function is defined as in
equation (11) (Palraj et al., 2021).

V ¼ 1

2
S2
T (11)

Figure 9. The fractional-order memristive oscillator’s circuit schematic for q = 0.97.
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Figure 10. Phase portraits of the fractional-order memristive 4D Chen system in PSpice program for q = 0.97.

_V ¼ ST ðKp1

�
α
�
kðew þ dÞey � ex

��þ Ki1D
1�λex þ Ki2D

1�λey

þKp3

�
exey � βez

�þ Ki3D
1�λez þ Kp4

�
ey
�þ Ki4D

1�λew
�

þKp2

�ðγ� αÞex � exez þ γey
�

þKp2

0
BBBBBBBBB@

1

Kp2

0
BB@
�Kp1

�
αkew þ αkdey � αex

�� Kp2

�
γex � aex � exez þ γey

�
�Kp3

�
exey � βez

�� Kp4ey � Ki1D
1�λex � Ki2D

1�λey

�Ki3D
1�λez � Ki4D

1�λew

�ηsgnðSTÞ

1
CCCCCCCCCA

(13)
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Figure 11. Simulation results for q = 0.948, k = 0.05, β = 0.5, α = 4 and, γ = 3 when the controller is activated at t = 50s.

Figure 12. Simulation results for q = 0.97, k = 0.05, β = 0.5, α = 4 and, γ = 3 when the controller is activated at t = 50s.
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Figure 13. Error convergence curves when the controller is activated at t = 50s. (a) q = 0.948 (b) q = 0.97.

Figure 14. Robustness performance evaluation of designed controller in case of disturbance.

Figure 15. Comparison of FOSMC with PI controller.
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Figure 16. Microcontroller-based experimental set-up.

Figure 17. Experimental results for q = 0.948, k = 0.05, β = 0.5, α = 4, and γ = 3 when the controller is activated at t = 50s. Time series of

the variables (a) x, (b) y, (c) z, (d) w.
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Substituting equation (8) into equation (11) and taking
the time derivative of the Lyapunov function yields equa-
tion (12) as follows:

_V ¼ ST _ST

¼ ST ðKp1

�
α
�
kðew þ dÞey � ex

��þ Ki1D
1�λex

þ Kp2

�ðγ� αÞex � exez þ γey þ u
�

þ Ki2D
1�λey þ Kp3

�
exey � βez

�
þ Ki3D

1�λez þ Kp4

�
ey
�þ Ki4D

1�λew
�

(12)

Substituting u (Equations (9) and (10)) into equation (12)
yields equation (13).

Consequently, the following equation is obtained when
equation (13) is simplified:

_V ¼ ST
��Kp2ηsgnðSTÞ

� ¼ �ρjST j ≤ 0 (14)

where ST sgnðST Þ ¼ jSj and Kp2η ¼ ρ. Clearly, ρ must be
strictly positive to be compatible with Lyapunov theory.

Hereby, error states converge to equilibrium points by
means of the designed FOSMC.

5.2. Numerical control of memristor-based
fractional-order chaotic oscillator

Numerical simulations are presented in this section to
verify the effectiveness of the designed FOSMC. Ac-
cording to the analyses in Section 3, if the non-integer
orders are chosen as q = 0.948 and q = 0.97, the system in
equation (2) is chaotic when the parameters α, β, γ, k, and
d are 4, 0.5, 3, 0.05, and 1, respectively. The initial
conditions are x(0) = 0, y(1) = 0, z(0) = 0, and w(0) = 0.
Simulations are carried out on the MATLAB/Simulink
program by utilizing the FOMCON fractional-order
toolbox. Note that controller parameters are optimized
by using integral-time absolute error (ITAE) performance
criteria to fairly compare the controller performances
(Calgan and Demirtas, 2021). The vector of FOSMC

Figure 18. Experimental results for q = 0.97, k = 0.05, β = 0.5, α = 4 and γ = 3 when the controller is activated at t = 50s. Time series of

the variables (a) x, (b) y, (c) z, (d) w.
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gains for previously determined non-integer orders (q) is
given in equation (15).

"
q,Kp1,Kp2,Kp3,Kp4,Ki1,Ki2,Ki3,Ki4, λ, ρ

q,Kp1,Kp2,Kp3,Kp4,Ki1,Ki2,Ki3,Ki4, λ, ρ

#T

¼
"
0:948; 9:28, 1:69, 1:02, 2:90, 0:26, 7:78, 0:10, 0:90, 0:93, 1:89

0:970; 0:78, 0:69, 0:10, 2:78, 9:39, 7:01, 0:60, 0:10, 0:71, 0:52

#T

(15)

Simulation results for E(0,0,0,0) are demonstrated in Figures
11 and 12 when the controller is implemented at t = 50s. It is
obvious that the proposed FOSMC has great potential for
controlling the fractional-order 4D memristive system. At the
time t= 50s, each of the states heads to the equilibriumpoint and
is kept on it for all the future time. The error figures are given in
Figure 13. As proven in equation (14), all of the errors in both
fractional order cases converge to zero.

The robustness performance of the designed FOSMC is
tested in the case of disturbance. At t = 60s, a positive signal
is added to the phase x as a disturbance, and a negative
signal is injected after t = 70s. It is shown from Figure 14
that FOSMC retains the states on equilibrium points re-
gardless of losing tracking performance. It is ensured that
FOSMC acts robustly against disturbances.

PID controller is also a common control method in the
literature and is widely used in control of chaotic systems
(Sahin et al., 2020). Afterwards, classical PI controller is
compared with designed controller taking into account
tracking dynamics and disturbance rejection capability.
Hence, previous simulation conditions are tackled again by
means of PI controller when proportional and integral gain
are chosen as 3.05, 0.9, respectively. It is shown from
Figure 15 that phase y of the system heads to equilibrium
point in a short time by means of PI controller. However, it
contains small scale oscillations and cannot manage to keep
the state on the reference quickly in case of disturbance. On
the other hand, ITAE performance metric of FOSMC is
calculated as 106.67 while PI controller metric is de-
termined as 270.62. It proves that designed FOSMC has
better tracking dynamics as compared to PI controller.

5.3. Experimental realization of the fractional-order
memristive chaotic oscillator by using
a microcontroller

The implementation of the memristive chaotic oscillator is
performed with an STM32 F411RE Nucleo board as shown
in Figure 16. Thanks to STMicroelectronics Hardware
Support from Simulink, instead of complex coding,
graphical programming is realized to apply the designed
FOSMC. Hereby, initial values and controller parameters
can be set by the user on Simulink and are deployed to the
microcontroller easily. The communication between
STM32 Nucleo and the computer occurs via a serial port

with the RS232 protocol. The STM32 Nucleo Toolbox also
provides external mode operation which offers real-time
adjustment of controller parameters. When the user presses
the “Start” button, the designed algorithm is compiled,
downloaded to the microcontroller, and starts generating the
states of the system from digital outputs. Each of the digital
outputs of the STM32 Nucleo board is connected to
a PWM-Analog converter through jumpers which provide
analog voltage signals.

Different illustrative experiments are presented in this
section to verify the effectiveness of the designed FOSMC.
Considering the analyses in Section 3, the fractional-order
parameter q is chosen as 0.948 or 0.97. On the other hand,
the system parameters α, β, γ, k, and d are chosen as 4, 0.5, 3,
0.05, and 1, respectively, in order to achieve chaotic be-
havior. Controller parameters are chosen as determined in
equation (15). Depending on the experimental facilities, the
output of each phase must be scaled between ±3.3 V for
digital application. Therefore, various scaling factors are
utilized here for x, y, z, and w as 0.2, 0.06, 0.04, and 0.1,
respectively. The experimental results for E(0,0,0,0) are
depicted in Figure 17 and Figure 18 when the controller is
activated at t = 50s.

As expected, Figures 11–12 and Figures 17–18 show
that the proposed fractional-order controller has accom-
plished the control of the memristive system (2). Therefore,
the proposed single state control approach based on the
fractional-order sliding mode method is effective for the
control of the memristive chaotic attractor. Furthermore,
successful operation of microcontroller-based experimental
realization is occurred by means of the single state FOSMC
which decreases computational complexity.

6. Conclusion

Thanks to fractional calculus, the complexity and dynam-
ical richness of a nonlinear system increase. On the other
hand, a flux-controlled memristor offers dynamical di-
versity due to its various properties such as nonvolatile and
nonlinear behavior. Taking into account the different
properties of factional-order systems and memristive
structures, the fractional-order forms of a 4D chaotic system
based on memristor is investigated in this study. The
fractional-order system with a memristor demonstrates
complex dynamic behavior, as revealed by bifurcation di-
agrams, Lyapunov exponent spectra, time series analyses,
and phase portraits. Chaotic behavior of 4D memristive
systemwith chosen fractional order (q = 0.97) is also proven
with electronic circuit implementation. Additionally, the
design of a FOSMC to stabilize the fractional-order 4D
memristive system on a predefined equilibrium point is
investigated. The superiority of the designed FOSMC is
proven in terms of tracking performance and disturbance
rejection while controlling a single state of the chaotic
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system. Numerical simulations and different illustrative
experiments of microcontroller-based realization verify the
effectiveness of the designed FOSMC. Future scope of
work may employ designed FOSMC in a secure commu-
nication or image encryption scheme, accurately.
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