T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

LANTAN OKSİT, NEODİMYUM OKSİT, SAMARYUM OKSİT VE KOBALT NİTRAT KATKILI ÇİNKO BORATLI BİLEŞİKLERİN LÜMİNESANS ÖZELLİKLERİ

DOĞUŞCAN BOŞNAK

YÜKSEK LİSANS TEZİ

Jüri Üyeleri : Prof. Dr. Orhan ZEYBEK (Tez Danışmanı) Prof. Dr. Halil GÜLER Dr. Öğr. Üyesi Ali ÇETİN

BALIKESİR, HAZİRAN - 2024

ETİK BEYAN

Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak tarafımca hazırlanan "Lantan Oksit, Neodimyum Oksit, Samaryum Oksit ve Kobalt Nitrat Katkılı Çinko Boratlı Bileşiklerin Lüminesans Özellikleri" başlıklı tezde;

- Tüm bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- Kullanılan veriler ve sonuçlarda herhangi bir değişiklik yapmadığımı,
- Tüm bilgi ve sonuçları bilimsel araştırma ve etik ilkelere uygun şekilde sunduğumu,
- Yararlandığım eserlere atıfta bulunarak kaynak gösterdiğimi,

beyan eder, aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ederim.

Doğuşcan BOŞNAK

Balıkesir Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından (2019/117) no'lu proje ile desteklenmiştir.

ÖZET

LANTAN OKSİT, NEODİMYUM OKSİT, SAMARYUM OKSİT VE KOBALT NİTRAT KATKILI ÇİNKO BORATLI BİLEŞİKLERİN LÜMİNESANS ÖZELLİKLERİ YÜKSEK LİSANS TEZİ DOĞUŞCAN BOŞNAK BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI (TEZ DANIŞMANI: PROF.DR. ORHAN ZEYBEK)

BALIKESİR, HAZİRAN - 2024

Tez çalışmasında sentezlenen bileşik Zn₃B₂O₆ monokliniktir. Lantan oksit, neodimyum oksit, samaryum oksit ve kobalt nitrat katkılı çinko boratlı bileşiğinin optiksel özellikleri incelenmiştir. Bu bileşiklerin kristal yapıları XRD ile açığa kavuşturulmuştur. Sentezlenen bileşik $3ZnO + B_2O_3 \rightarrow Zn_3B_2O_6$ deki B_2O_3 mol miktarı %10, %20 ve %30'a artırılınca fotolüminesans (FL) siddetinde bir azalma görülmüstür. Kırmızı ısık bölgesine denk gelen 1şıldama 780 nm'de gerçekleşmiştir. Molce Co(NO₃)₃ %25 ve B₂O₃ %100 ve 4Zn0 %25 miktarından molce Co(NO₃)₃ %12.5 ve B₂O₃ %100 ve 4Zn0 %12.5 miktarlarına ve sonra molce Co(NO₃)₃ %2.5 ve B₂O₃ %100 ve 4Zn0 %2.5 miktarlarına azaltılınca 380 nm deki piklerin şiddetleri artmaktadır. 640 nm'de her üç spektrum kesişmekte, molce Co(NO₃)₃ ve 4Zn0 miktarları ¹/₄ miktarında azaldıkca 780 nm ve 800 nm'deki piklerin siddetleri ve genişlikleri artmıştır. Molce %2.5'dan %12.5'a Nd₂O₃ miktarı artırılınca mavi, yeşil ve kırmızı emisyonların kaynağı, sığ kusur seviyelerindeki elektronların valans bandındaki foto uyarılmış deliklerle rekombinasyonuna atfedilmiştir. Ultraviyole emisyon geçişleri ve mavi, yeşil ve kırmızı emisyon bandı Nd³⁺ iyon geçişinden kaynaklanmıştır. Molce %2.5'dan %12.5'a La₂O₃ miktari artırılınca La³⁺ için uyarma bantları 405 - 419 - 438 - 465 - 479 - 544 - 554 nm'de görülmüştür. La^{3+'}ün emisyon geçişleri, uyarılmış seviyeden daha düşük seviyelere tipik 4f geçişleridir. La³⁺'ün 564 - 599 - 646 nm olmak üzere üç emisyon geçişi görülmüş olup 599 nm geçişi parlak turuncu-kırmızımsı bir emisyondur. Molce %2.5'dan %12.5'a Sm₂O₃ miktarı artırılınca Sm³⁺ için uyarma spektrumları sırasıyla 390 nm, 527 nm ve 561 nm'dir. En yüksek geçiş 390 nm'de bulunmuştur. Emisyon spektrumlarını elde etmek için 563, 599, 645 ve 705 nm dalgaboylarında sarı, turuncu, turuncu-kırmızı ve kırmızı emisyon geçişlerine bağlı dört emisyon geçişi tespit edilmiştir. Geçişlerin emisyon pik gücü, Sm₂O₃ içeriğinin %2.5'dan %12.5 mol'e yükselmesiyle artmıştır. Sm₂O₃ içeriğinin artmasıyla Sm³⁺ iyonları arasındaki ana mesafe azalır ve bu da samaryum iyonları arasında enerji transferini artırır.

ANAHTAR KELİMELER: Lantan oksit, neodimyum oksit, samaryum oksit ve kobalt nitrat, çinko borat, fotolüminesans

Bilim Kod / Kodları : 20206, 20223

Sayfa Sayısı : 54

ABSTRACT

LUMINESCENCE PROPERTIES OF LANTHANUM OXIDE, NEODYMIUM OXIDE, SAMARIUM OXIDE AND COBALT NITRATE DOPED ZINC BORATE COMPOUNDS

MSC THESIS DOĞUŞCAN BOŞNAK BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE PHYSICS (SUPERVISOR: PROF.DR. ORHAN ZEYBEK)

BALIKESİR, JUNE - 2024

The compound Zn₃B₂O₆ synthesised in this thesis is monoclinic. The optical properties of zinc borate doped with lanthanum oxide, neodymium oxide, samarium oxide and cobalt nitrate were investigated. The crystal structures of these compounds have been revealed by XRD. A decrease in photoluminescence (PL) intensity was observed when the molar amount of B2O3 in the synthesised compound $3ZnO + B_2O_3 \rightarrow Zn_3B_2O_6$ was increased to 10%, 20% and 30%. The luminescence corresponding to the red light region occurred at 780 nm. The intensities of the peaks at 380 nm increased when the molar amounts of Co(NO₃)₃ 25% and B₂O₃ 100% and 4Zn0 25% were decreased to molar amounts of Co(NO₃)₃ 12.5% and B₂O₃ 100% and 4Zn0 12.5% and then to molar amounts Co(NO₃)₃ 2.5% and B₂O₃ 100% and 4Zn0 2.5%. At 640 nm, all three spectra intersect and the intensities and widths of the peaks at 780 nm and 800 nm increased as the molar amounts of Co(NO₃)₃ and 4Zn0 were decreased by $\frac{1}{4}$. When the amount of Nd₂O₃ was increased from 2.5% to 12.5% mol%, the origin of the blue, green and red emissions was attributed to the recombination of electrons at shallow defect levels with photoexcited holes in the valence band. The ultraviolet emission transitions and the blue, green and red emission band were due to the Nd³⁺ ion transition. When the amount of La_2O_3 was increased from 2.5 to 12.5 mol%, excitation bands for La^{3+} were observed at 405 - 419 - 438 - 465 - 479 - 544 - 554 nm. The emission transitions of La^{3+} are typical 4f transitions from the excited level to lower levels. Three emission transitions of La^{3+} were seen at 564 - 599 - 646 nm, with the 599 nm transition being a bright orange-reddish emission. When the amount of Sm₂O₃ was increased from 2.5% to 12.5% mol%, the excitation spectra for Sm³⁺ were 390 nm, 527 nm and 561 nm, respectively. The highest transition was found at 390 nm. In order to obtain the emission spectra, four emission transitions due to yellow, orange, orange-red and red emission transitions were detected at wavelengths of 563, 599, 645 and 705 nm. The emission peak power of the transitions increased with the increase in Sm₂O₃ content from 2.5 mol% to 12.5 mol%. The main distance between Sm³⁺ ions decreases with increasing Sm₂O₃ content, which increases the energy transfer between samarium ions.

KEYWORDS: Lanthanum oxide, neodymium oxide, samarium oxide and cobalt nitrate, zinc borate, photoluminescence

Science Code / Codes : 20206, 20223

Page Number : 54

İÇİNDEKİLER

<u>Sayfa</u>

ÖZETi
ABSTRACTii
İÇİNDEKİLERiii
ŞEKİL LİŞTESİiv
TABLO LÍSTESÍv
sembol Listesivi
ONSOZ
I. GIRIŞ
1.2 Çınko Boratlı Bileşikler
1.3 Lantan Oksit
1.4 Neodimyum Oksit
1.5 Samaryum Oksit
1.6 Kobalt Nitrat
1.7 X-Işınları Toz Kırınımı (XRD)7
1.8 Fotolüminesans
1.9 Tez Çalışmasının Amacı 11
2. MATERYAL VE YÖNTEM 12
2.1 Deneylerdeki Kimyasal Maddeler12
2.2 Deneylerdeki Kullanılan Aygıtlar 12
2.3 Katı-Hal yöntemi
3. BULGULAR
3.1 Deneysel Sonuçların Yorumlanması
3.2 Sentezlenen Bileşiklerin XRD Grafikleri ve Yorumlanması
3.3 XRD Spektrumları
3.4 Fotoluminesans Enerji Seviyesi Diyagramları
3.5 Fotoluminesans Spektrumları ve Analizi
3.6 Sonuç ve Genel Değerlendirme
4. KAYNAKLAR
5.ÖZGEÇMİŞ

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil	1.1 : Türkiye'de bor rezervleri	2
Şekil	1.2: X-ışınları toz kırınım deney düzeneği	8
Şekil	1.3: Fotolüminesans spektroskopisinin çalışma prensibi	10
Şekil	1.4: Uyarılmış elektronun kararlı hale dönerken oluşan ışıma çeşitleri	11
Şekil	2.1: X'per PRO (PANalytical) gelişmiş XRD cihazı	12
Şekil	2.2: Fotolüminesans ölçümleri için kullanılan cihaz	12
Şekil	3.1: DB-20 XRD spektrumu	19
Şekil	3.2: DB-22 XRD spektrumu	20
Şekil	3.3: DB-26 XRD spektrumu	21
Şekil	3.4: DB-29 XRD spektrumu	22
Şekil	3.5: DB-30 XRD spektrumu	23
Şekil	3.6: DB-31 XRD spektrumu	24
Şekil	3.7: DB-32 XRD spektrumu	25
Şekil	3.8: DB-33 XRD spektrumu	26
Şekil	3.9: DB-34 XRD spektrumu	27
Şekil	3.10: DB-35 XRD spektrumu	28
Şekil	3.11: DB-36 XRD spektrumu	30
Şekil	3.12: DB-37 XRD spektrumu	31
Şekil	3.13: DB-38 XRD spektrumu	32
Şekil	3.14: DB-39 XRD spektrumu	33
Şekil	3.15: DB-40 XRD spektrumu	35
Şekil	3.16: DB-41 XRD spektrumu	36
Şekil	3.17: DB-42 XRD spektrumu	37
Şekil	3.18: DB-43 XRD spektrumu	38
Şekil	3.19: DB-44 XRD spektrumu	39
Şekil	3.20: DB-45 XRD spektrumu	40
Şekil	3.21: DB-46 XRD spektrumu	41
Şekil	3.22: Nd ⁻⁵ 'ún (a) kismi enerji diyagrami [23], (b) $F_{5/2}$ ilgili geçişler [24]	42
Şekil	3.23: Sm ⁺³ için enerji transfer sisteminin temsili	43
Şekil	3.24: FL spektrumlari	44
Şekil	3.25: FL spektrumlari	45
Şekil	3.26: FL spektrumlari	46
Şekil	3.27: FL spektrumlari	47

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 3.1: Deneylerde kullanılan kodlar	. 14
Tablo 3.2: DB-20 XRD sayısal değerleri	. 19
Tablo 3.3: DB-22 XRD sayısal değerleri	. 20
Tablo 3.4: DB-26 XRD sayısal değerleri	. 21
Tablo 3.5: DB-29 XRD sayısal değerleri	. 22
Tablo 3.6: DB-30 XRD sayısal değerleri	. 23
Tablo 3.7: DB-31 XRD sayısal değerleri	. 24
Tablo 3.8: DB-32 XRD sayısal değerleri	. 25
Tablo 3.9: DB-33 XRD sayısal değerleri	. 26
Tablo 3.10: DB-34 XRD sayısal değerleri	. 27
Tablo 3.11: DB-35 XRD sayısal değerleri	. 28
Tablo 3.12: DB-36 XRD sayısal değerleri	. 30
Tablo 3.13: DB-37 XRD sayısal değerleri	. 31
Tablo 3.14: DB-38 XRD sayısal değerleri	. 32
Tablo 3.15: DB-39 XRD sayısal değerleri	. 33
Tablo 3.16: DB-40 XRD sayısal değerleri.	. 35
Tablo 3.17: DB-41 XRD sayısal değerleri	. 36
Tablo 3.18: DB-42 XRD sayısal değerleri	. 37
Tablo 3.19: DB-43 XRD sayısal değerleri	. 38
Tablo 3.20: DB-44 XRD sayısal değerleri	. 39
Tablo 3.21: DB-45 XRD sayısal değerleri	. 40
Tablo 3.22: DB-46 XRD sayısal değerleri	. 41

SEMBOL LİSTESİ

ICDD	: Uluslararası Difraksiyon Verileri Merkezi
KF	: Kül Fırını
NM	: Nanometre
PL	: Fotolüminesans
TL	: Termolüminesans
XRD	: X-Işınları Kırınımı
FL	: Fotolüminesans

ÖNSÖZ

Çalışmalarımda birçok olumlu hadiseler ile karşılaştım. Bu süreçte her daim yanımda olan, desteğini hiçbir zaman esirgemeyen, çalışmalarıma fazlasıyla vakit aıyıran Prof. Dr. Orhan ZEYBEK'e, çok değerli çok kıymetli hocam Prof. Dr. Halil GÜLER'e, bu günlere gelmemde en büyük desteği sağlayan annem Fatma BOŞNAK ve babam Kadir BOŞNAK'a minnettarım.

Balıkesir 2024

Doğuşcan BOŞNAK

1. GİRİŞ

Bu bölümde tez konusu ile ilgili teorik bilgiler sunulacaktır. Tez çalışma konusu ile ilgili teorik bilgiler ve tez çalışmasının amacı bu bölümünde sunulacaktır. İlerleyen bölümlerde yapılan deneysel çalışmalar ve bu deney sonuçlarıyla ilgili detaylı bilgiler sunulacaktır. Bu tezin son kısmında ise yapılan deneysel çalışmalar ile ilgili bulgular tartışma ve sonuçlar sunulacaktır.

1.1 Bor

Bor kimyasal bir elementtir; atom ağırlığı 10,81 g/mol, sembolü B, ergime derecesi 2300 °C ve periyodik tablonun beşinci elementidir. Bor doğada element olarak bulunmaz ve genellikle toprakta, kayalarda, yüzeyde ve okyanus sularında borik asit ve inorganik boratlar şeklinde bulunur. Bor bitkiler için temel bir elementtir ve muhtemelen insan ve hayvan sağlığı için de gereklidir. Modern kullanım alanları arasında cam, fiberglas, yıkama ürünleri, alaşımlar ve metaller, gübreler, ahşap işlemleri, böcek ilaçları ve mikrobiyositler bulunmaktadır.

Yüzyıllar boyunca bor, benzerlikler nedeniyle onu sık sık karbonla karıştıran ilk araştırmacılar için şaşırtıcı bir element olmuştur. Daha sonra, 1808 yılında borat minerallerinden bor elde etmek için çalışan iki araştırma ekibi borun izolasyonunu başardıklarını ilan ettiler. Bu iki ekibin ürettiği kimyasalın yaklaşık %60 bor içeren bir bileşik olduğunu kanıtlamak için yüzyıl kadar uzun bir süre geçmiştir. Kimyager Moissan'ın çabaları ile 1892 yılında elementin yaklaşık %90 bor içeren çok daha saf bir formunu meydana getirdi. Daha sonra kimyager Weintraub 1909'da %99 saflıkta bor meydana getirmiştir [1].

Günümüzde, bor tozunun makul ölçüde saf bir formunu üretmek için, dört ana borat mineralinden birinde (tinkal, kernit, kolemanit veya uleksit) bulunan bor oksit, magnezyum veya alüminyum eritken ile ısıtılır. Bu indirgeme işlemi sayesinde yaklaşık %92 saflıkta elementel bor tozu üretilebilir.

Şekil 1'de gösterildiği gibi Türkiye dünyadaki en büyük bor kaynağıdır ve yaklaşık %73'üne sahiptir. İçinde bor bulunan ürünler içeriği genellikle boratlar olarak adlandırılır.

Şekil 1.1 : Türkiye'de bor rezervleri.

Türk kanun ve mevzuatlarına göre, Eti Maden İşletmeleri Genel Müdürlüğü borat ürünleri çıkarabilen, işleyebilen ve ihraç edebilen tek kuruluştur. Eti Maden tamamen devlete ait bir kuruluştur. 1935 yılında Türkiye'nin doğal kaynaklarını değerlendirmek amacıyla Etibank adıyla kurulmuştur. Etibank'ın ilk misyonu, özel yatırımcıların yeterli sermaye ve bilgi birikimine sahip olmadığı zamanlarda ülkenin doğal kaynaklarının değerlendirilmesine öncülük etmekti. Yıllar süren dönüşümün ardından adını Eti Maden olarak değiştiren şirket, kendini yeniledi ve bugün borat madenciliği ve arıtma endüstrisinde uzmanlaşmış lider bir kuruluş haline geldi. Eti Maden, 2006 yılından bu yana dünyanın en büyük borat üreticisi ve pazar lideridir. Ülke, önceki yıllarda olduğu gibi çıkarıldıktan sonra doğrudan satmak yerine, daha fazla bor işleyerek ve kendisi yarı mamul ve mamul ürünler üreterek malzemenin katma değerli ürünlerini artırmaya çalışıyor. Eti Maden'in Türkiye'nin çeşitli bölgelerinde borat madenleri ve üretim tesisleri bulunmaktadır. Rezervlerin bulunduğu yerler:

- ✓ Tinkal: Seyitgazi Kırka.
- ✓ Kolemanit: Kütahya Emet, Balıkesir Bigadiç ve Bursa Kestelek.

✓ Üleksit: Balıkesir - Bigadiç'in yanı sıra Bursa - Kestelek'in bir kısmı.

1.2 Çinko Boratlı Bileşikler

Çinko boratlar, biyo-kompozitlerde, plastik, seramik, elektrik yalıtımı, ahşap, tel, çimento, ilaç, boyalarda ve seramiklerde fonksiyonel ve kauçuk gibi katkı maddeleri olarak ve diğer polimer bileşimlerinin üretiminde alev geciktirici olarak termal stabiliteleri nedeniyle endüstriyel uygulamaları olan önemli kimyasal ürünlerdir. İyi belgelenmiş on üç hidratlı ikili çinko borattan Zn[B₃O₄(OH)₃] (2ZnO·3B₂O₃·3H₂O) en büyük miktarda üretilir ve bir ticaret ürünü olarak 2ZnO·3B₂O₃·3.5H₂O olarak bilinir. Ticari kullanımdaki diğer hidratlı çinko boratlar arasında 4ZnO·B₂O₃·H₂O, 3ZnO·3B₂O₃·5H₂O ve 2ZnO·3B₂O₃·7H₂O bulunmaktadır

Çinko boratlar, küresel üretim ve kullanım açısından bor içeren endüstriyel kimyasallar arasında ilk onda yer almaktadır [2]. Her yıl on binlerce ton çinko borat, özel özelliklerinden yararlanılarak çeşitli uygulamalarda kullanılmaktadır. Genel bileşimi aZnO·bB₂O₃·cH₂O olan ikili çinko boratlar ailesi, burada c >0'dır, en az onüç benzersiz kristal bileşik içerir; bunların en önemlisi 2ZnO·3B₂O₃·3H₂O veya Zn[B₃O₄(OH)₃] olup, ticarette genellikle 2ZnO·3B₂O₃·3.5H₂O olarak adlandırılır. Çinko boratların başlıca uygulamaları arasında biyo-kompozit yapı malzemelerine dayanıklılık kazandırmak ve polimerlerin yangın performansını ve elektriksel özelliklerini iyileştirmek yer almaktadır. Çinko boratlar ayrıca korozyon önleyici, yangın geciktirici ve kaplamalarda koruyucu, seramik gövdelerde ve tarımsal mikro besinlerde bileşen olarak hizmet vermektedir. Endüstriyel çinko boratların uygulamaları, biyo-kompozit yapı malzemelerinde koruyucu olarak ve yangın geciktirici olarak kullanılmaktadır.

1.3 Lantan Oksit

Lantan (La), bir kimyasal element olup periyodik tablonun 3. Grubunda yer alan ve lantanit serisi elementlerden olan nadir bir toprak metalidir. 6 K (-267 °C veya -449 °F) ile erime noktası olan 1.191 K (918 °C veya 1.684 °F) arasında paramanyetiktir ve 4 ile 300 K (-269 ile 27 °C veya -452 ile 80 °F) arasında sıcaklıktan bağımsız bir manyetik duyarlılığa sahiptir. Lantan, atmosferik basınçta yüz merkezli kübik β fazında 6,0 K (-267,2 °C veya -448,9 °F) veya çift yakın paketlenmiş altıgen α fazında 5,1 K (-268,1 °C veya -450,5 °F) altında süper iletken hale gelir [3].

Lantan periyodik sisteminde sıra numarası 57, La sembolü ile gösterilir, suda çözünmeyen katıdır. Asidik bir çözelti içinde çözülebilir ve nemçekerdir. Lantan oksit p-tipi yarı iletken özelliklere sahiptir. Nadir toprak metal oksitleri arasında en büyük bant aralığına (yaklaşık olarak 5.8 eV), en düşük kafes enerjisine ve çok yüksek bir dielektrik sabitine sahiptir. Ortalama oda sıcaklığı direnci 10 k Ω -cm'dir ve sıcaklık arttıkça azalır. La₂O₃, nadir toprak oksitleri arasında düşük kafes enerjisine ve yüksek dielektrik sabitine ($\epsilon = 27$) sahiptir [4].

Lantan, lantanoid grubundaki ilk nadir toprak elementidir ve bu grubun diğer tüm nadir toprak elementleri için modeldir. Seryumdan sonra lantan en bol bulunan nadir toprak elementidir. Lantanla zenginleştirilmiş bileşikler, özellikle ham petrolden yüksek oktanlı benzin üretimi için yakıt katalizinde parçalama reaksiyonları için yaygın olarak kullanılmaktadır. Zenginleştirilmiş metalik lantan, daha düşük şarj maliyetleriyle (zaman ve enerji) iki kat daha uzun süre dayanabilmeleri nedeniyle 2000'li yılların başında cep telefonlarında kullanılmaya başlanan hidrojen pillerinin üretiminde önemli bir rol oynamaktadır [5].

Lantan oksit, itriyum-lantanum-florür bileşiklerine dayanan lazer kristallerinde de kullanılır. Lantan oksit, hassas optik cam, optik fiber, seramik, katalizör, elektronik endüstrisi, seramik kondansatör, piezoelektrik seramik katkı maddesi, lantan borat hazırlamak için hammadde ve petrol ayırma ve rafine etme için katalizör üretiminde kullanılabilir. Ayrıca, lantan oksit optik cam, lazer malzemeleri, piezoelektrik malzemeler, elektrotermal malzemeler, termoelektrik malzemeler, manyetorezistif malzemeler, ışıldayan malzemeler, hidrojen depolama malzemeleri, çeşitli alaşım malzemeleri, organik kimyasal ürünler için katalizörler, nadir toprak gübresi üretiminde de kullanılabilir [7].

Lantan oksit, beyaz bir katı olan La₂O₃ formülüne sahip inorganik bir bileşiktir. Havadaki suyu ve karbondioksiti kolayca emer ancak suda çözünmez. Yüksek kırılma indisi, yüksek yoğunluk, sertlik, yüksek ısı iletkenliği ve yüksek korozyon direnci özelliklerine sahiptir. Fiziksel özellikleri bakımından lantan oksit kristal bir yapıya sahiptir ve farklı formlar alabilir. Toz veya kristal halinde işlenebilir, yüksek kırılma indisine sahiptir ve iyi bir optik malzemedir [8].

Kimyasal özelliklerle ilgili olarak, lantan oksit yüksek kimyasal stabiliteye, hava ve suya karşı düşük reaktiviteye sahiptir ve asitler, bazlar ve tuzlar gibi çoğu kimyasal reaktifle

reaksiyona girmez. Yüksek korozyon direncine sahiptir ve yüksek sıcaklıklarda ayrışma veya oksidasyon olmadan stabil kalabilir. Yukarıdaki özelliklere ve uygulamalara ek olarak, lantan oksit ayrıca lantan alüminyum oksit, lantan zirkonyum oksit vb. gibi diğer elementlerle metaller arası bileşikler oluşturabilir. Bu intermetalik bileşikler daha benzersiz fizikokimyasal özelliklere ve yüksek sıcaklıkta süper iletken, manyetik ve enerji depolama malzemeleri hazırlamak gibi daha geniş uygulama olanaklarına sahiptir. Bu nedenle, Lantan oksit ve metaller arası bileşiği, teknoloji ve bilimin bir sonraki aşamasında geniş uygulama alanlarına ve gelişme potansiyeline sahiptir [9].

1.4 Neodimyum Oksit

Neodim olarak da adlandırılan neodimyum oksit, cam ve kapasitörler için kullanılır. Neodim içeren cam, tutarlı ışık üretmek için yakut yerine kullanılan bir lazer malzemesidir [5, 10].

Neodimyum Oksit ayrıca neodimyum metal ve neodimyum demir bor manyetik malzemelerin üretiminde kullanılır, neodimyum katkılı itriyum alüminyum garnet lazer teknolojisinde, cam ve seramikte katkı maddesi olarak kullanılır [6, 11].

Kimyasal formülü Nd₂O₃ olan neodim oksit, bir metal oksittir. Suda çözünmeme ve asitlerde çözünme özelliğine sahiptir. Neodim oksit esas olarak cam ve seramikler için bir renklendirici madde olarak ve ayrıca metal neodim ve güçlü manyetik neodim demir bor üretimi için bir hammadde olarak kullanılır. Magnezyum veya alüminyum alaşımlarına %1,5 ila %2,5 nano neodim oksit eklemek, alaşımların yüksek sıcaklık performansını, hava geçirmezliğini ve korozyon direncini artırabilir ve havacılık ve uzay malzemeleri olarak yaygın şekilde kullanılır. Buna ek olarak, neodim oksit katkılı nano itriyum alüminyum garnet ve kesilmesi için yaygın olarak kullanılan kısa dalga lazer ışınları üretir. Tıbbi uygulamada, neodim oksit katkılı nano itriyum alüminyum garnet lazerler, cerrahi bıçakların yerine cerrahi yaraları çıkarmak veya dezenfekte etmek için kullanılır. Nano neodim oksit ayrıca cam ve seramik malzemelerin yanı sıra kauçuk ürünler ve katkı maddelerinin renklendirilmesinde de kullanılmaktadır [7, 12].

Neodimyum oksit ayrıca nanoparçacıkları organik kimyasal üretimlerde, otomobil egzozlarında kullanılmaktadır [13].

1.5 Samaryum Oksit

Samaria olarak da adlandırılan Samaryum Oksit, Samaryum yüksek nötron emme kapasitesine sahiptir, Samaryum Oksitlerin cam, fosforlar, lazerler ve termoelektrik cihazlarda özel kullanımları vardır. Samaryum ile işlenmiş Kalsiyum Klorür kristalleri, metali yakacak veya aydan sekecek kadar yoğun ışık demetleri üreten lazerlerde kullanılmıştır. Samaryum Oksit, kızılötesi radyasyonu absorbe etmek için optik ve kızılötesi emici camlarda kullanılmaktadır [14].

Samaryum oksit (Sm₂O₃) önemli nadir toprak oksitlerinden biridir. Bileşiğin kristal yapısı kübik kristal formundadır. Samaryum oksit tozunun görünümü genellikle kirli beyazdır. Yoğunluğu 8,43 g/cm³, erime ve kaynama noktaları sırasıyla 2335 °C ve 4118 °C olan yüksek dielektrikli bir malzemedir. Sm₂O₃, yüksek dielektrik sabiti (7 ila 15), yüksek arıza elektrik alanı (5 MV/cm ila 7 MV/cm), büyük bant aralığı (4,33 eV), düşük kaçak akım, Si ile büyük iletim bandı ofseti, iyi termal kararlılık, düşük frekanslı dağılım ve düşük yakalama oranları gibi olağanüstü özelliklere sahiptir. Sm₂O₃'ün ayrıca Si substrat üzerinde termodinamik olarak kararlı olduğu tahmin edilmektedir. Sm₂O₃ önemli uygulama alanları şunlardır [15];

- ✓ optik ve kızılötesi emici camlar,
- ✓ nükleer güç reaktörleri için kontrol çubuklarında nötron emici,
- ✓ asiklik primer alkollerin aldehitlere ve ketonlara dehidrasyonu için katalizör.

Samaryum ve bileşiklerinin bir diğer önemli uygulaması, asiklik birincil alkollerin aldehitlere ve ketonlara dehidrasyonunu katalize etmek için etkili olan katalizör ve kimyasal reaktif olarak kullanılır. Olağan oksitlenmiş formunda Samaryum, kızılötesi radyasyon soğurmasını arttırdığı seramiklere, optik ve kızılötesi emici camlara eklenebilir. Ayrıca nükleer güç reaktörleri için kontrol çubuklarında nötron emici olarak kullanıldığı kanıtlanmıştır. Ayrıca Samaryum oksit, mineral asitlerde çözülerek buharlaştırma ve kristalleştirme yoluyla diğer samaryum tuzlarının hazırlanmasında da kullanılabilir. Samaryum oksit, metalin havada veya oksijende 150°C'nin üzerinde yakılmasıyla elde edilir [16].

Samaryum oksit, cam, optik ve seramikler üzerindeki uygulamalar için uygun, yüksek oranda çözünmeyen, ısıya dayanıklı bir samaryum kaynağıdır. Samaryum oksit, samaryum karbonat, nitrat, oksalat veya sülfatın termal ayrışmasıyla veya metalin 150 °C'nin üzerindeki bir sıcaklıkta havada veya oksijende yakılmasıyla hazırlanır. Samaryum oksit, buharlaştırma ve kristalizasyondan sonra tuzlar oluşturur. Mineral asitlerdeki samaryum oksit tozunun (Sm₂O₃) saflığı yüksek (% 99.999) değerdedir. Samaryum oksit genellikle çoğu hacimde hemen temin edilebilir. Yüksek saflıktaki bileşimler hem optik kaliteyi hem de bilimsel standartlar olarak kullanışlılığı arttırır. Elementer tozlar ve nano ölçekli süspansiyonlar, yüksek yüzey alanına sahip alternatif formlar olarak düşünülebilir. Samaryum lazer uygulamalarında ve Nd: YAG katı hal lazerlerinde dielektrik ve filtre özellikleri için kullanılır. Yararlı dielektrik özelliklere sahip kararlı titan bileşikleri oluşturur. Nadir toprak oksit bileşikleri bazik anhidritlerdir ve bu nedenle oksidasyon-redüksiyon reaksiyonlarında asitler ve güçlü indirgeyici maddelerle reaksiyona girebilirler. En az bir oksijen anyonu ve bir metal katyonu içeren bileşiklerdir [17, 18].

1.6 Kobalt Nitrat

Kobalt nitrat kokusuz kırmızı bir katı olup batarak suyun içinde gömülür. Kobalt nitrat, Co(NO₃)₂.xH₂O şeklinde inorganik bir bileşiktir. Kullanılan en yaygın şekli hekzahidrat Co(NO₃)₂-6H₂O'dur. Kırmızı-kahverengi eriyebilen bir tuz olabilir ve suda ve diğer polar çözücülerde çözünür. Kobalt(II)'nin tuzudur. En yaygın biçimi, suda ve diğer polar çözücülerde çözünebilen kırmızı-kahverengi eriyebilen bir tuz olan hekzahidrat Co(NO₃)₂-6H₂O'dur [8]. Susuz Co(NO₃)₂ bileşiğinin yanı sıra, birkaç kobalt(II) nitrat hidratı da mevcuttur. Bu hidratlar Co(NO₃)₂-nH₂O kimyasal formülüne sahiptir, burada n = 0, 2, 4, 6'dır. Kobalt Nitrat II inorganik bir bileşiktir. Her nitrat iyonu üç kobalta koordine olur [9]. Kobalt (II) nitrat bir kobalt nitratıdır. Kobalt nitratın yüksek çözünürlüğü, onu metal-organik çerçevelerde ve polimerlerde yaygın bir kobalt kaynağı haline getirir. Kobalt, atom numarası 27 olan metalik bir elementtir. Kayalarda, toprakta, suda, bitkilerde ve hayvanlarda doğal olarak bulunur [19].

1.7 X-Işınları Toz Kırınımı (XRD)

X-ışını kırınımı (XRD), kimyasal bileşim, kristal yapısı, kristal yönelimi, kristalit boyutu, kafes gerilimi, tercih edilen yönelim ve katman kalınlığı gibi bilgileri tahribatsız ve doğru bir şekilde elde eden tek laboratuvar tekniğidir. Bu nedenle malzeme araştırmacıları, tozlardan katılara, ince filmlere ve nanomalzemelere kadar geniş bir yelpazedeki

malzemeleri analiz etmek için XRD'yi kullanmaktadır. Şekil 1.2'de XRD deney düzeneği görülmektedir.

XRD, toz, katı ve sıvı numunelerin faz bileşimi, kristal yapısı ve yönelimi gibi fiziksel özelliklerini analiz etmek için kullanılan çok yönlü, tahribatsız bir analitik tekniktir. Birçok malzeme küçük kristallerden oluşur. Bu kristallerin kimyasal bileşimi ve yapısal türü "faz" olarak adlandırılır. Malzemeler tek fazlı veya çok fazlı karışımlar olabilir ve kristalli ve kristalli olmayan bileşenler içerebilir.

Şekil 1.2: X-ışınları toz kırınım deney düzeneği.

Bir X-ışını difraktometresinde, farklı kristal fazlar farklı kırınım desenleri verir. Faz tanımlaması, bilinmeyen numunelerden elde edilen X-ışını kırınım desenlerinin referans veri tabanlarındaki desenlerle karşılaştırılmasıyla gerçekleştirilebilir. Bu işlem, bir olay yeri incelemesinde parmak izlerinin eşleştirilmesine benzer. En kapsamlı bileşik veritabanı ICDD (Uluslararası Kırınım Verileri Merkezi) tarafından tutulmaktadır. Ayrıca ölçülen saf faz kırınım desenlerinden, bilimsel literatürde yayınlanan desenlerden veya kendi ölçümlerimizden bir referans veri tabanı oluşturabilir.

Bir X-ışını cihazı üç ana öğe içerir: birincisi X-ışını kaynağı, ikincisi örnek tutucu ve üçüncüsü XRD dedektörüdür. Kaynak tarafından üretilen X-ışınları numuneyi aydınlatır.

Daha sonra örnek fazı tarafından kırılır ve dedektöre girer. Kırınım açısını (20, gelen ve kırınan ışınlar arasındaki açı) değiştirmek için tüp veya numune ve dedektör hareket ettirilerek yoğunluk ölçülür ve kırınım verileri kaydedilir. Difraktometrenin geometrisine ve numunenin türüne bağlı olarak, gelen ışın ile numune arasındaki açı sabit veya değişken olabilir ve genellikle kırılan ışın açısı ile eşleştirilir. Hem endüstriyel hem de bilimsel laboratuvarlarda birçok araştırmacı, yeni malzemeler geliştirmek veya üretim verimliliğini artırmak için bir araç olarak XRD'ye güvenmektedir. X-ışını kırınımındaki yenilikler, yarıiletken teknolojileri veya farmasötik incelemeler gibi yeni malzemeler üzerine yapılan araştırmaları yakından takip etmektedir.

1.8 Fotolüminesans

Işık bir deneysel çalışma yapılacak numuneye çarptığında, foto-uyarma olarak bilinen fiziksel yol ile malzemeye fazla enerjisini vererek soğurulur. Numunenin bu fazla enerjiyi dağıttığı yöntemlerden biri de ışık emisyonu, yani lüminesanstır. Foto-uyarma durumunda, lüminesans fotolüminesans (FL) olarak bilinir.

Şekil 1.3'de uyarma, malzemenin elektronlarının izin verilen uyarılmış durumları işgal etmesine neden olur. Bu uyarılmış elektronlar, ya ışınımsal süreç olarak bilinen ışık biçimindeki ya da ışınımsal olmayan herhangi bir süreç biçimindeki ekstra enerjiyi dağıtarak kararlı hallerine, yani denge ya da temel durumlarına geri dönerler. Yayılan ışık enerjisi (yani FL), uyarılmış ve denge durumları arasındaki geçişte rol alan iki elektronik durumun enerjilerindeki enerji farkıyla bağlantılıdır. Oysa ışınım sürecinin kısmı yayılan ışığın miktarını belirler.

Bir madde, soğurma olayından gelen enerjiyi yeniden yaymadan önce iç enerji geçişlerine uğradığında daha fazla süreç meydana gelebilir. Elektronlar, ya bir fotonun soğurulmasından rezonans yoluyla enerji kazanarak ya da foton yayarak enerji kaybederek enerji durumlarını değiştirirler. Kimya ile ilgili disiplinlerde sıklıkla floresans ve fosforesans arasında ayrım yapılır. Birincisi tipik olarak hızlı bir süreçtir, ancak orijinal enerjinin bir kısmı dağılır, böylece yeniden yayılan ışık fotonları, soğurulan uyarılma fotonlarından daha düşük enerjiye sahip olur. Bu durumda yeniden yayılan fotonun, bu kaybın ardından taşıdığı enerjinin azalmasına atıfta bulunarak kırmızıya kaydığı söylenir. Fosforesans için, fotonları soğuran elektronlar, sistemler arası geçişe uğrarlar ve burada genellikle üçlü bir durum olan, spin çokluğu değiştirilmiş bir duruma girerler.

Şekil 1.3: Fotolüminesans spektroskopisinin çalışma prensibi.

Şekil 1.4'de gösterildiği gibi uyarılmış elektron bu üçlü duruma aktarıldığında, elektronun düşük tekli durum enerjilerine geri dönüşümü (gevşemesi) kuantum mekaniksel olarak yasaktır, bu da bunun diğer geçişlerden çok daha yavaş gerçekleştiği anlamına gelir [20].

Tipik bir PL deneyinde, bir yarı iletken, fotonlara bant aralığı enerjisinden daha büyük bir enerji sağlayan bir ışık kaynağı ile uyarılır. Gelen ışık, yarı iletken Bloch denklemleriyle tanımlanabilecek bir polarizasyonu harekete geçirir [7, 8]. Fotonlar soğurultuktan sonra, iletkenlik ve değerlik bantlarında sırasıyla sonlu momentuma sahip elektronlar ve delikler oluşur. Uyarılar daha sonra minimum bant aralığına doğru enerji ve momentum gevşemesine uğrar. Tipik mekanizmalar Coulomb saçılımı ve fononlarla etkileşimdir. Son olarak elektronlar, foton emisyonu altında deliklerle yeniden birleşir. İdeal, hatasız yarı iletkenler, hafif madde bağlantısına ek olarak yük taşıyıcıların ve kafes titreşimlerinin etkileşimlerinin de dikkate alınması gereken çok gövdeli sistemlerdir. Genel olarak, PL özellikleri aynı zamanda dahili elektrik alanlarına ve dielektrik çevreye (fotonik kristaller gibi) karşı da son derece hassastır ve bu da daha fazla karmaşıklık derecesi getirir. Yarı iletken lüminesans denklemleri tarafından kesin bir mikroskobik açıklama sağlanır [21].

Şekil 1.4: Uyarılmış elektronun kararlı hale dönerken oluşan ışıma çeşitleri.

Fotolüminesans spektroskopisi, yarı iletkenlerin ve moleküllerin optik ve elektronik özelliklerinin karakterizasyonu için yaygın olarak kullanılan bir tekniktir. Kimyada buna daha çok floresans spektroskopisi denir, ancak enstrümantasyon aynıdır [22]. Gevşeme süreçleri, fotolüminesansın bozunma ömrünü bulmak için zamanla çözümlenen floresans spektroskopisi kullanılarak incelenebilir. Bu teknikler, bir numune (örneğin, yarı iletken bir levha veya floresan moleküllerle işaretlenmiş bir biyolojik numune) boyunca fotolüminesansın yoğunluğunu (eş odaklı mikroskopi) veya ömrünü (floresan ömrü görüntüleme mikroskobu) haritalamak için mikroskopla birleştirilebilir.

1.9 Tez Çalışmasının Amacı

Amacımız, çinko boratlı bileşiklere lantan oksit, neodyum oksit, samaryum oksit ve kobalt nitrat katkılayarak elde edilen son bileşiğin ışıldama özelliklerini incelemektir.

2. MATERYAL VE YÖNTEM

2.1 Deneylerdeki Kimyasal Maddeler

Deneylerde kullanılmış kimyasallar: ZnO, B2O3, La2O3, Nd2O3, Co3O4, (Co(NO3)3, Sm2O3.

2.2 Deneylerdeki Aygıtlar

Katı-hal kimyasal tepkimeler için Protherm PLF marka ve 120/10 numaralı kül firini kullanılmıştır. Şekil 2.1 de gösterildiği gibi, X-ışını toz difraksiyon ölçümleri homojenize edilmiş toz karışımdan elde edilen pelletlerle Philips marka Panalytical X-Pert Pro isimli aygıttan alınmıştır.

Şekil 2.1: X'per PRO (PANalytical) gelişmiş XRD cihazı kullanılmıştır.

Fotolüminesans ölçümleri de bileşikleri uyarılma kaynağı olarak 349 nm dalga boyuna sahip, Nd:YLFQ lazer ışığı kullanılmış olup, açığa çıkan lüminesans ışıkları da mercekler ile toplanmış, Intensified Charge Coupled Device (ICDD) isimli kamera ile kayıt yapılmıştır. Şekil 2.2'da deneyde kullanılan fotolüminesans cihazı görülmektedir.

Şekil 2.2: Fotolüminesans ölçümleri için kullanılan cihaz.

2.3 Katı-Hal yöntemi

Deneylerde kullanılan bileşikler katı-hal kimyasal tepkime yoluyla şu şekilde elde edilmiştir:

DENEY 1 (D-1):
$$3ZnO + B_2O_3 \rightarrow Zn_3B_2O_6$$

DENEY 2 (D-2): $4ZnO + 3B_2O_3 \rightarrow Zn_4O(BO_2)_6$

Bu şekilde edilen sonuç bileşiğine kütlece ve mol olarak belirli oranlarda lantan oksit, neodimyum oksit ve samaryum oksit katkılama yaparak tartılmış ve havanda uzun süre öğütülüp homojenize hale getirilmiştir. Elde edilen bu karışım ısıya dayanıklı porselen krozeye konulmuştur ve 450°C sıcaklıkta 4-saat süresince kalsinasyon işleme tabi tutulmuştur. Agat havanda homojensi bir karışım elde edilinceye kadar ezilip porselen krozeye konulmuştur. Bu işlem sonrasında porselen kroze kül fırına konulmuştur. Fırın sıcaklığı 700-900 °C arasındaki sıcaklıklara çıkarılarak fırınlama süresi sabit olup 18 saatdir. Fırınlama işlemi bittikten sonra oda sıcaklığına soğuyamaya bırakılmıştır. Bu aşamadan sonraki adımda ise XRD ve PL dneylerinin yapılması için desikatörlerde korunmuştur.

3. BULGULAR

3.1 Deneysel Sonuçların Yorumlanması

Tablo 3.1'de gerçekleştirilen deneylerde kullanılan kimyasallar detaylı bir şekilde sunulmuştur. Kolaylık olması için deneyleri gerçekleştiren öğrencinin ad ve soyadının baş harfleri ve sıralı numara ile kodlanmıştır.

KOD	Deneyler	Katkılanan Madde (KM)	KM Miktarı	Azaltılan- Artırılan madde ve miktarı	Fırınlanma Süresi	Fırınlanma Derecesi
DB-1	D - 1	La ₂ O ₃	Kütlece % 1	-	18-saat	(900 °C)
DB-2	D - 1	La ₂ O ₃	Kütlece % 3	-	18-saat	(900 °C)
DB-3	D - 1	La ₂ O ₃	Kütlece % 5	-	18-saat	(900 °C)
DB-4	D - 1	La ₂ O ₃	Kütlece % 7	-	18-saat	(900 °C)
DB-5	D - 1	La ₂ O ₃	Kütlece % 10	-	18-saat	(900 °C)
DB-6	D - 1	Nd_2O_3	Kütlece % 1	-	18-saat	(900 °C)
DB-7	D - 1	Nd_2O_3	Kütlece % 5	-	18-saat	(900 °C)
DB-8	D - 1	Nd_2O_3	Kütlece % 10	-	18-saat	(900 °C)
DB-9	D - 1	Sm_2O_3	Kütlece % 1	-	18-saat	(900 °C)
DB-10	D - 1	Sm_2O_3	Kütlece % 5	-	18-saat	(900 °C)
DB-11	D - 1	Sm_2O_3	Kütlece % 10		18-saat	(900 °C)

KOD	Deneyler	Katkılanan Madde (KM)	KM Miktarı	Azaltılan- Artırılan madde ve miktarı	Fırınlanma Süresi	Fırınlanma Derecesi
DB-12	D - 1	Nd ₂ O ₃	Kütlece % 3		18-saat	(900 °C)
DB-13	D - 1	Nd ₂ O ₃	Kütlece % 7		18-saat	(900 °C)
DB-14	D - 1	Sm ₂ O ₃	Kütlece % 3		18-saat	(900 °C)
DB-15	D - 1	Sm ₂ O ₃	Kütlece % 7		18-saat	(900 °C)
DB-16a	D - 1			$B_2O_3 \ \%10\uparrow$	18-saat	(700 °C)
DB-16b	D - 1			B ₂ O ₃ %10↑	18-saat	(800 °C)
DB-16c	D - 1			B ₂ O ₃ %10↑	18-saat	(900 °C)
DB-17a	D - 1			B ₂ O ₃ %20↑	18-saat	(700 °C)
DB-17b	D - 1			B ₂ O ₃ %20↑	18-saat	(800 °C)
DB-17c	D - 1			$B_2O_3~\%20{\uparrow}$	18-saat	(900 °C)
DB-18a	D - 1			B_2O_3 %30 \uparrow	18-saat	(700 °C)
DB-18b	D - 1			$B_2O_3~\%30{\uparrow}$	18-saat	(800 °C)
DB-18c	D - 1			B_2O_3 %30 \uparrow	18-saat	(900 °C)
DB-19	D - 1			B_2O_3 %60 \uparrow	18-saat	(900 °C)
DB-20	D - 1			B_2O_3 %70↑	18-saat	(900 °C)

Tablo 3.1 (devam)

KOD	Deneyler	Katkılanan Madde (KM)	KM Miktarı	Azaltılan- Artırılan madde ve miktarı	Fırınlanma Süresi	Fırınlanma Derecesi
DB-21	D - 1			B ₂ O ₃ %80↑	18-saat	(900 °C)
DB-22	D - 1			B_2O_3 %60↑	18-saat	(800 °C)
DB-23	D - 1			$B_2O_3 \%100\uparrow$	18-saat	(800 °C)
DB-24	D - 1			B ₂ O ₃ %200↑	18-saat	(800 °C)
DB-25	D - 1			B_2O_3 %300↑	18-saat	(800°C)
DB-26	D - 1			B_2O_3 %400 \uparrow	18-saat	(800°C)
DB-27	D - 1			B_2O_3 %500↑	18-saat	(800°C)
DB-28	D - 1			B_2O_3 %500↑	18-saat	(800°C)
DB-29	D - 2	Nd ₂ O ₃	0,337 gr (0,001 mol)	B ₂ O ₃ %25↑ 4ZnO 0,001 mol↓	18-saat	(800°C)
DB-30	D - 2	La ₂ O ₃	0,325 gr (0,001 mol)	B ₂ O ₃ %25↑ 4ZnO 0,001 mol↓	18-saat	(800°C)
DB-31	D - 2	Sm ₂ O ₃	0,348 gr (0,001 mol)	B ₂ O ₃ %25↑ 4ZnO 0,001 mol↓	18-saat	(800°C)
DB-32	D-2	Nd_2O_3	0,303 gr (0,0009 mol)	B ₂ O ₃ %100↑ 4ZnO 0,0009 mol↓	18-saat	(800°C)
DB-33	D-2	La_2O_3	0,293 gr (0,0009 mol)	B ₂ O ₃ %100↑ 4ZnO 0,0009 mol↓	18-saat	(800°C)
DB-34	D-2	Sm_2O_3	0,313 gr (0,0009 mol)	B ₂ O ₃ %100↑ 4ZnO 0,0009 mol↓	18-saat	(800°C)
DB-35	D-2	Co_3O_4	0.45gr (molce %25)	B ₂ O ₃ %100↑ 4ZnO %25↓	18-saat	(800°C)

Tablo 3.1 (devam)

KOD	Deneyler	Katkılanan Madde (KM)	KM Miktarı	Azaltılan- Artırılan madde ve miktarı	Fırınlanma Süresi	F1r1nlanma Derecesi
DB-36	D-2	Nd ₂ O ₃	0.631gr (molce %25)	B ₂ O ₃ %100↑ 4ZnO %25↓	18-saat	(800°C)
DB-37	D-2	La ₂ O ₃	0.609gr (molce %25)	B ₂ O ₃ %100↑ 4ZnO %25↓	18-saat	(800°C)
DB-38	D-2	(Co(NO ₃) ₃	0.55 gr (molce %25)	B ₂ O ₃ %100↑ 4ZnO %25↓	18-saat	(800°C)
DB-39	D-2	(Co(NO ₃) ₃	0.275 gr (molce %12,5)	B ₂ O ₃ %100↑ 4ZnO %12,5↓	18-saat	(800°C)
DB-40	D-2	(Co(NO ₃) ₃	0.055 gr (molce %2,5)	B ₂ O ₃ %100↑ 4ZnO %2,5↓	18-saat	(800°C)
DB-41	D-2	Nd_2O_3	0.0315 gr (molce %2,5)	B ₂ O ₃ %100↑ 4ZnO %2,5↓	18-saat	(800°C)
DB-42	D-2	La ₂ O ₃	0.0304 gr (molce %2,5)	B ₂ O ₃ %100↑ 4ZnO %2,5↓	18-saat	(800°C)
DB-43	D-2	Sm_2O_3	0.032 gr (molce %2,5)	B ₂ O ₃ %100↑ 4ZnO %2,5↓	18-saat	(800°C)
DB-44	D-2	Nd_2O_3	0.3037 gr (molce %12,5)	B ₂ O ₃ %125↑ 4ZnO %12,5↓	18-saat	(800°C)
DB-45	D-2	La_2O_3	0.293 gr (molce %12,5)	B ₂ O ₃ %125↑ 4ZnO %12,5↓	18-saat	(800°C)
DB-46	D-2	Sm ₂ O ₃	0.313 gr (molce %12,5)	B ₂ O ₃ %125↑ 4ZnO %12,5↓	18-saat	(800°C)

Tablo 3.1: (devam)

3.2 Sentezlenen Bileşiklerin XRD Grafikleri ve Yorumlanması

Tablo 3.1'de belirtilen oranlarda katkılama kimyasalları olan nadir toprak metal oksitlerinin kütlece yüzde miktarlarında ve orantılı değerleri detaylı bir şekilde sunulmuştur.

D–1: $3ZnO + B_2O_3 \rightarrow Zn_3B_2O_6$ bu bileşikden elde edilen deneysel çalışmalar sonucunda DB-20, DB-22 ve DB-26 kodlarını içeren XRD verilerinin en yüksek "d" değerinin 3.38 - 6.13 arasında sayısal değerler aldığı tespit edilmiştir. Bu yapının ICDD (The International Centre for Diffraction Data - Uluslararası Difraksiyon Verileri Merkezi) kataloğunda 27-1487 numaralı karta uyduğu tespit edilmiştir. Bu karta göre a: 7.473 Å olup kübik kristal yapısında olduğu görülmüştür. D–2: $4ZnO + 3B_2O_3 \rightarrow Zn_4O(BO_2)_6$ elde edilen bu bileşiğe katkılanan Nd₂O₃, La₂O₃ ve Sm₂O₃ kimyasallarla beraber üçer set halinde B₂O₃ %25 ve yine üçer set halinde B₂O₃ %100 artırılmış şekilde elde edilen DB-29, DB-31, DB-32, DB-33, DB-34, DB-35, DB-36, DB-37 numaralı deneyler yapıldıktan sonra elde edilen XRD verilerine göre ICDD veri kataloğuna göre şu kart numaralarına uymaktadır: 73-1275 olan kart numarasına göre a: 13.714 Å, b:8.091 Å ve c: 8.631 Å ve 76-0781 olan kart numarasına göre a: 4.613 Å, b: 7,803 Å ve c: 4.129 Å. Kristal yapı olarak da ortorombik yapısında olduğu görülmüştür.

DB-38, DB-39 VE DB-40 numaralı deneylerde katkılanan (Co(NO₃) bileşiğiyle elde edilen XRD verileri ICDD kataloğuna göre 33-0267 numaralı karta uymakta olup a:8.725 Å, b: 11. 253 Å ve c: 6.098 Å olup kristal yapı olarak da monoklinik yapıda olduğu tespit edilmiştir.

DB-41, DB-42, DB-43, DB-44, DB-45 ve DB-46 numaralı deneylerde katkılanan Nd₂O₃, La₂O₃ ve Sm₂O₃ bileşiklerden sonra kütlece değişen miktarlarda B₂O₃ bileşiğinden elde edilen XRD verileri değerlendirilmiştir. ICDD kart numarası 27-1487'ye göre a: 7.473 Å, 39-1126'ya göre a: 7.473 Å ve 83-1424' a: 7.473 Å olup kristal yapısı basit kübik yapıdadır.

3.3 XRD Spektrumları

DB-20 deneyine ait XRD spektrumu Şekil 3.1'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.2'de gösterilmiştir.

Şekil 3.1: DB-20 X R D spektrumu.

Po. [° 2 Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
26,3377	78,65	0,1680	3,38115	10,49
27,7634	94,60	0,2160	3,21068	12,62
29,0658	749,65	0,2400	3,06971	100,00
37,8446	191,85	0,2880	2,37537	25,59
45,1686	171,73	0,2160	2,00577	22,91
48,5209	127,90	0,2160	1,87473	17,06
51,6706	307,03	0,2160	1,76761	40,96
63,2620	72,63	0,2400	1,46878	9,69
68,5961	109,74	0,1920	1,36700	14,64
71,1952	79,47	0,1920	1,32334	10,60

Tablo 3.2: DB-20 X R D sayısal değerleri.

DB-22 deneyine ait XRD spektrumu Şekil 3.2'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.3'de gösterilmiştir.

Şekil 3.2: DB-22 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
21,2565	90,17	0,2160	4,17651	18,10
26,3075	144,67	0,2640	3,38496	29,04
27,6813	176,99	0,2880	3,22002	35,53
29,0175	498,10	0,2880	3,07470	100,00
29,6970	60,72	0,2160	3,00588	12,19
32,0003	55,71	0,3840	2,79458	11,18
35,3622	93,03	0,1920	2,53622	18,68
35,8517	78,39	0,2640	2,50271	15,74
36,7958	61,31	0,3120	2,44063	12,31
37,8598	110,56	0,3120	2,37445	22,20
45,1964	103,39	0,3600	2,00460	20,76
48,4506	61,49	0,3360	1,87729	12,34
51,6338	180,77	0,2400	1,76878	36,29
60,5239	37,12	0,3840	1,52851	7,45
63,2117	44,25	0,3360	1,46983	8,88

Tablo 3.3: DB-22 XRD sayısal değerleri.

DB-26 deneyinde XRD'ye ait spektrum Şekil 3.3'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.4'de gösterilmiştir.

Şekil 3.3: DB-26 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
14,4170	37,85	0,3840	6,13878	4,78
16,7602	54,44	0,3840	5,28547	6,88
21,3898	36,81	0,2640	4,15078	4,65
27,6989	162,47	0,3840	3,21801	20,52
29,1071	791,78	0,2880	3,06545	100,00
37,8905	172,15	0,2880	2,37260	21,74
45,2366	161,63	0,3360	2,00291	20,41
48,5249	94,41	0,2160	1,87459	11,92
51,7304	267,73	0,2400	1,76571	33,81
63,3212	51,23	0,4800	1,46755	6,47
68,5617	64,54	0,4320	1,36760	8,15
71,2945	48,46	0,3360	1,32174	6,12
73,7768	45,29	0,3840	1,28328	5,72

Tablo 3.4: DB-26 XRD sayısal değerleri.

DB-29 deneyinde XRD'ye ait spektrum Şekil 3.4'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.5'de gösterilmiştir. Katkılanan kimyasal Nd₂O₃'dür.

Şekil 3.4: DB-29 XRD spektrumu.

P o. [° 2 Th.]	Heigh. [cts]	$FWHM[^{\circ} 2Th]$	d–spac. [Å]	Re. In. [%]
21,4638	15,84	1,1520	4,13664	9,96
25,6143	26,71	0,2640	3,47497	16,80
26,7550	27,03	0,3840	3,32936	16,99
28,9901	159,03	0,2400	3,07755	100,00
30,8492	12,02	1,1520	2,89619	7,56
32,7226	15,14	0,2880	2,73453	9,52
35,2104	12,12	1,1520	2,54681	7,62
37,8019	38,44	0,2880	2,37795	24,17
45,0829	37,49	0,3840	2,00938	23,57
46,5860	12,25	0,5760	1,94799	7,70
48,4916	27,84	0,3840	1,87580	17,51
51,5743	43,61	0,2640	1,77068	27,42
60,3364	4,81	1,1520	1,53281	3,02
68,6092	13,86	0,5760	1,36677	8,71
71,3347	6,55	1,1520	1,32109	4,12
73,7907	9,81	0,5760	1,28307	6,17
83,6416	7,84	0,5760	1,15521	4,93

Tablo 3.5: DB-29 XRD sayısal değerleri.

DB-30 deneyinde XRD'ye ait spektrum Şekil 3.5'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.6'da gösterilmiştir. Katkılanan kimyasal La₂O₃'dür.

Şekil 3.5: DB-30 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	$FWHM[^{\circ} 2Th]$	d–spac. [Å]	Re. In. [%]
23,4045	9,91	0,2880	3,79783	9,18
25,4890	15,64	0,2640	3,49178	14,48
27,0278	11,66	0,2880	3,29636	10,80
29,2728	108,03	0,2880	3,04847	100,00
30,3999	9,39	0,5760	2,93796	8,69
38,0752	24,32	0,2400	2,36152	22,51
44,7441	9,93	0,5760	2,02380	9,19
45,4100	22,77	0,3120	1,99566	21,08
48,7610	21,50	0,3840	1,86606	19,90
51,8877	40,23	0,2880	1,76072	37,24
68,8531	10,91	0,5760	1,36252	10,10
73,9977	8,80	0,3840	1,27999	8,15

Tablo 3.6: DB-30 XRD	sayısal	değerleri.
----------------------	---------	------------

DB-31 deneyinde XRD'ye ait spektrum Şekil 3.6'da görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.7'de gösterilmiştir. Katkılanan kimyasal Sm₂O₃'dür.

Şekil 3.6: DB-31 XRD spektrumu.

Tablo 3.7:	DB-31	XRD	sayısal	değerleri.
			2	0

Po. [°2Th.]	Heigh. [cts]	FWHM[°2Th.]	d – spac. [Å]	Re. In. [%]
24,3070	5,66	1,1520	3,65883	7,82
29,3440	72,40	0,2880	3,04123	100,00
31,3413	11,54	0,2880	2,85182	15,94
35,5920	7,94	0,7680	2,52037	10,96
38,1977	14,91	0,2880	2,35422	20,60
45,5195	22,67	0,4320	1,99112	31,31
47,0033	10,14	0,2880	1,93166	14,00
48,9092	12,51	0,4800	1,86075	17,28
52,0300	29,80	0,2640	1,75624	41,16
60,9705	5,49	0,5760	1,51838	7,59
63,7156	6,23	0,3840	1,45942	8,60
68,9101	9,95	0,2880	1,36153	13,75
71,5326	6,43	0,5760	1,31792	8,88
73,9975	5,34	0,5760	1,28000	7,38
76,6350	5,05	0,5760	1,24238	6,97

DB-32 deneyinde XRD'ye ait spektrum Şekil 3.7'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.7'da gösterilmiştir. Katkılanan kimyasal Nd₂O₃'dür.

P o. [° 2 Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
16,9553	56,62	0,1920	5,22507	29,25
21,5607	34,74	0,2160	4,11828	17,95
23,5675	28,90	0,1920	3,77193	14,93
25,5322	33,39	0,1680	3,48596	17,25
26,0104	20,61	0,2640	3,42295	10,65
27,1191	39,71	0,2880	3,28548	20,51
28,4612	49,58	0,1920	3,13352	25,61
29,2990	193,58	0,2640	3,04580	100,00
30,5361	32,57	0,2880	2,92516	16,83
31,2684	56,08	0,1920	2,85831	28,97
33,0119	30,14	0,1680	2,71123	15,57
35,7523	29,27	0,2400	2,50944	15,12
38,1096	48,05	0,2880	2,35946	24,82
45,4065	52,10	0,2880	1,99581	26,92
46,8300	29,98	0,2400	1,93840	15,49
48,8049	37,05	0,3840	1,86448	19,14
51,9266	68,28	0,3120	1,75950	35,27

Tablo 3.8: DB-32 XRD sayısal değerleri.

DB-33 deneyinde XRD'ye ait spektrum Şekil 3.8'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.7'da gösterilmiştir. Katkılanan kimyasal La₂O₃'dür.

Şekil 3.8: DB-33 XRD spektrumu.

Po. [° 2Th.]	Heigh. [c.ts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
13,9534	32,61	0,1440	6,34171	8,46
16,8477	100,13	0,1680	5,25820	25,97
21,4675	57,02	0,1680	4,13594	14,79
21,8312	54,39	0,1680	4,06785	14,11
23,3660	63,60	0,1920	3,80401	16,50
24,2008	39,64	0,2160	3,67464	10,28
25,4365	63,77	0,2160	3,49887	16,54
26,9345	73,70	0,1680	3,30757	19,12
28,3497	52,14	0,1920	3,14560	13,52
29,1942	385,57	0,1920	3,05650	100,00
30,4816	51,91	0,2640	2,93027	13,46
31,1683	65,50	0,1680	2,86726	16,99
32,7322	41,28	0,1920	2,73375	10,71
36,0407	28,69	0,2400	2,49002	7,44
36,7462	32,20	0,2160	2,44381	8,35
38,0039	82,07	0,1680	2,36578	21,28
40,4300	34,17	0,1440	2,22924	8,86
44,6606	36,24	0,2880	2,02739	9,40
45,3130	69,56	0,2880	1,99971	18,04
48,7045	49,75	0,3600	1,86809	12,90
51,8011	105,75	0,2400	1,76346	27,43
68,7408	28,38	0,4800	1,36447	7,36

Tablo 3.9: DB-33 XRD sayısal değerleri.

DB-34 deneyinde XRD'ye ait spektrum Şekil 3.9'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.10'da gösterilmiştir. Katkılanan kimyasal Sm₂O₃'dür.

Şekil 3.9: DB-34 XRD spektrumu.

Po. [° 2 Th.]	Heigh. [cts]	$FWHM[^{\circ}2Th]$	d–spac. [Å]	Re. In. [%]
16,9735	40.38	0,3840	5,21952	21,04
20,9466	18,07	0,2880	4,23760	9,41
21,5619	33,15	0,2640	4,11805	17,27
23,6642	24,45	0,2400	3,75674	12,74
24,4173	20,58	0,3840	3,64255	10,72
27,1913	16,80	0,3840	3,27692	8,75
27,9956	32,71	0,2160	3,18457	17,04
28,4413	33,23	0,1920	3,13568	17,32
29,2728	191,93	0,2400	3,04846	100,00
30,4927	25,02	0,2880	2,92923	13,04
31,2565	62,06	0,1920	2,85937	32,34
33,1217	18,11	0,2880	2,70249	9,44
35,7065	24,90	0,3120	2,51256	12,97
36,1772	16,35	0,2880	2,48093	8,52
38,0739	44,23	0,2160	2,36159	23,04
40,5556	18,90	0,2880	2,22262	9,85
41,8489	23,73	0,1920	2,15687	12,36
45,3689	57,79	0,3360	1,99738	30,11
47,0047	21,59	0,2880	1,93161	11,25
48,7785	29,35	0,3360	1,86543	15,29
51,9294	63,46	0,1680	1,75941	33,06
60,7000	14,81	0,2880	1,52450	7,72
63,4516	13,97	0,3840	1,46485	7,28
68,8250	16,68	0,2880	1,36301	8,69

Tablo 3.10: DB-34 XRD sayısal değerleri.

DB-35 deneyinde XRD'ye ait spektrum Şekil 3.10'da görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.11'de gösterilmiştir. Katkılanan kimyasal Co₃O₄'dür.

Şekil 3.10: DB-35 XRD spektrumu.

P o. [° 2 Th.]	Heigh. [c.ts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
17,1767	23,40	0,4320	5,15821	26,72
21,9163	9,05	0,9600	4,05224	10,34
24,3407	10,51	0,5760	3,65384	12,00
28,6500	18,27	0,2880	3,11330	20,86
29,4251	87,58	0,3840	3,03304	100,00
31,4076	34,45	0,1920	2,84596	39,34
35,8516	10,18	0,5760	2,50271	11,62
37,0228	41,21	0,2400	2,42619	47,05
38,2498	31,01	0,3360	2,35113	35,40
40,5884	13,19	0,3840	2,22090	15,06
45,5942	28,07	0,3360	1,98803	32,05
47,0668	11,74	0,2880	1,92920	13,41

Tablo 3.11: DB-35 XRD sayısal değerleri.

48,8776	17,77	0,3840	1,86188	20,29
50,1864	6,92	0,5760	1,81635	7,91
52,0722	52,95	0,3360	1,75492	60,46
53,9370	13,75	0,2880	1,69856	15,70
56,1887	9,10	0,5760	1,63571	10,39
59,5495	19,44	0,3840	1,55117	22,20
60,8166	12,93	0,3840	1,52185	14,77
63,7043	8,18	0,2880	1,45965	9,34
65,4488	22,13	0,4320	1,42490	25,27
68,9180	14,89	0,2880	1,36139	17,00
71,5289	10,47	0,3840	1,31798	11,96
74,1556	8,11	0,6720	1,27766	9,26
84,0841	6,24	0,5760	1,15026	7,12

DB-36 deneyinde XRD'ye ait spektrum Şekil 3.11'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.12'de gösterilmiştir. Katkılanan kimyasal Nd₂O₃'dür.

Şekil 3.11: DB-36 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
20,5990	7,96	0,2160	4,30832	17,68
23,5772	16,11	0,2880	3,77041	35,80
25,5246	15,32	0,1680	3,48698	34,04
25,8952	45,00	0,1920	3,43791	100,00
26,9164	32,47	0,2400	3,30975	72,15
29,1864	28,45	0,2160	3,05729	63,24
30,5967	16,93	0,3360	2,91951	37,62
31,0254	22,37	0,2640	2,88014	49,72
32,9734	20,04	0,2880	2,71430	44,53
35,5534	5,68	0,7680	2,52302	12,62
42,3426	4,46	1,1520	2,13286	9,92
45,1365	37,62	0,2400	2,00712	83,61
46,8133	18,05	0,2400	1,93906	40,11
47,6767	10,61	0,4800	1,90594	23,57
48,7922	22,18	0,2880	1,86494	49,29
49,8433	11,74	0,3360	1,82804	26,10
52,1112	7,75	0,5760	1,75370	17,22
56,0945	4,26	1,1520	1,63824	9,46
58,1941	11,78	0,3840	1,58403	26,18
60,8901	5,92	0,5760	1,52019	13,15
62,4787	7,17	0,5760	1,48530	15,93
65,2756	6,54	0,5760	1,42826	14,53
76,4118	4,21	1,1520	1,24545	9,35

Tablo 3.12: DB-36 XRD sayısal değerleri.

DB-37 deneyinde XRD'ye ait spektrum Şekil 3.12'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.13'de gösterilmiştir. Katkılanan kimyasal La₂O₃'dür.

Şekil 3.12: DB-37 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
23,2817	21,29	0,2400	3,81758	62,71
25,3191	33,96	0,2400	3,51482	100,00
26,9265	31,17	0,1920	3,30854	91,79
29,1636	19,61	0,3840	3,05963	57,74
30,6057	14,98	0,2400	2,91867	44,13
31,4208	10,00	0,4800	2,84479	29,46
32,7080	20,83	0,2640	2,73571	61,35
35,9610	9,98	0,3360	2,49536	29,40
36,6933	18,06	0,2880	2,44722	53,18
42,4241	4,76	0,9600	2,12895	14,02
44,6045	25,66	0,4800	2,02981	75,56
46,2940	12,89	0,2880	1,95959	37,96
48,7257	10,48	0,5760	1,86733	30,87
50,8517	9,06	0,4320	1,79413	26,67
51,7709	10,65	0,2160	1,76442	31,36
57,6936	5,50	0,7680	1,59658	16,21
72,8266	3,77	0,5760	1,29766	11,11
76,3807	4,91	0,6720	1,24588	14,47

Tablo 3.13: DB-37 XRD sayısal değerleri.

DB-38 deneyinde XRD'ye ait spektrum Şekil 3.13'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.14'de gösterilmiştir. Katkılanan kimyasal Co(NO₃)₃'dür.

Şekil 3.13: DB-38 XRD spektrumu.

Po. [° 2 Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
16,6754	44,17	0,2400	5,31214	34,82
21,2943	40,72	0,1680	4,16917	32,10
21,6232	30,04	0,2160	4,10651	23,69
24,0857	11,87	0,3840	3,69194	9,36
27,6843	20,07	0,2880	3,21967	15,83
28,1477	33,25	0,2160	3,16771	26,22
29,0427	126,83	0,2640	3,07209	100,00
30,2491	13,58	0,3840	2,95226	10,71
30,9813	34,28	0,3360	2,88414	27,03
35,3263	20,37	0,3840	2,53872	16,06
37,7651	31,86	0,2880	2,38019	25,12
40,1054	15,84	0,7680	2,24653	12,49
41,5738	13,01	0,3840	2,17051	10,26
45,1456	28,23	0,2880	2,00673	22,26
46,5738	18,47	0,4320	1,94847	14,57
48,5053	17,40	0,3360	1,87530	13,72
51,5848	46,70	0,2640	1,77035	36,82
55,7873	10,44	0,2880	1,64653	8,23
60,3770	9,85	0,3360	1,53188	7,77
68,6465	11,16	0,5760	1,36611	8,80
71,1120	9,01	0,5760	1,32468	7,11
73,6909	8,23	0,5760	1,28456	6,49
83,5425	8,84	0,5760	1,15633	6,97

Tablo 3.14: DB-38 XRD sayısal değerleri.

DB-39 deneyinde XRD'ye ait spektrum Şekil 3.14'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.15'de gösterilmiştir. Katkılanan kimyasal Co(NO₃)₃'dür.

Şekil 3.14: DB-39 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
14,5833	17,31	0,5760	6,06918	3,42
16,8533	76,04	0,2160	5,25645	15,00
21,4561	56,20	0,1920	4,13812	11,09
21,8059	42,61	0,1920	4,07250	8,41
24,1307	38,05	0,1920	3,68517	7,51
24,9959	18,40	0,3840	3,55952	3,63
26,4404	50,38	0,1920	3,36825	9,94
27,8301	138,63	0,2160	3,20313	27,35
28,3184	61,62	0,1680	3,14900	12,16
29,1610	506,79	0,2160	3,05990	100,00
29,8113	21,08	0,2880	2,99461	4,16
30,4417	42,43	0,1680	2,93402	8,37
31,1427	75,54	0,2160	2,86956	14,91
32,1766	18,31	0,3840	2,77967	3,61
35,5144	47,77	0,1680	2,52570	9,43
35,9659	28,14	0,3360	2,49503	5,55
36,8793	31,46	0,3360	2,43530	6,21
37,9138	86,59	0,2640	2,37120	17,09
40,3735	29,30	0,3840	2,23222	5,78

Tablo 3.15: DB-39 XRD	sayısal	değerleri.
-----------------------	---------	------------

41,7718	18,30	0,3840	2,16068	3,61
44,7040	15,84	0,3360	2,02553	3,13
45,2589	92,17	0,2160	2,00197	18,19
46,7884	31,67	0,2160	1,94003	6,25
48,5937	47,58	0,1920	1,87209	9,39
51,7681	137,00	0,3600	1,76451	27,03
56,0126	17,18	0,4800	1,64044	3,39
60,5706	27,32	0,2160	1,52744	5,39
63,3486	29,92	0,2400	1,46699	5,90
68,6273	36,10	0,3840	1,36645	7,12
71,2645	27,90	0,2400	1,32222	5,51
73,9031	22,64	0,4800	1,28140	4,47
76,3631	18,38	0,4800	1,24612	3,63
83,7561	21,08	0,2880	1,15392	4,16

DB-40 deneyinde XRD'ye ait spektrum Şekil 3.15'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.16'da gösterilmiştir. Katkılanan kimyasal Co(NO₃)₃'dür.

Şekil 3.15: DB-40 XRD spektrumu.

P o. [° 2 Th.]	Heigh. [cts]	$FWHM[^{\circ} 2Th]$	d–spac. [Å]	Re. In. [%]
16,8022	73,20	0,1680	5,27234	8,86
21,3962	60,29	0,1680	4,14956	7,29
27,7866	44,99	0,2400	3,20804	5,44
28,2669	44,23	0,1440	3,15462	5,35
29,1284	826,58	0,2400	3,06325	100,00
31,0959	53,37	0,1920	2,87377	6,46
35,5187	36,51	0,2160	2,52541	4,42
37,9174	179,90	0,2880	2,37098	21,76
45,2025	136,21	0,3360	2,00434	16,48
48,5301	84,87	0,3120	1,87440	10,27
51,7247	253,94	0,3360	1,76589	30,72
60,5542	51,31	0,3360	1,52782	6,21
63,4354	41,11	0,4080	1,46519	4,97
68,6312	69,38	0,2400	1,36638	8,39
71,2554	46,45	0,2160	1,32237	5,62
73,8300	48,40	0,2640	1,28249	5,86
83,7519	40,09	0,2640	1,15397	4,85

Tablo 3.16: DB-40 XRD sayısal değerleri.

DB-41 deneyinde XRD'ye ait spektrum Şekil 3.16'da görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.17'de gösterilmiştir. Katkılanan kimyasal Nd₂O₃'dür.

Şekil 3.16: DB-41 XRD spektrumu.

Po. [° 2Th.]	Heigh. [c.ts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
14,5241	18,24	0,5760	6,09378	14,53
16,9333	42,88	0,1920	5,23181	34,18
21,6653	21,35	0,5760	4,09861	17,02
27,9450	76,16	0,2400	3,19022	60,70
28,3542	31,24	0,2880	3,14511	24,90
29,3274	125,47	0,3360	3,04292	100,00
31,1977	33,31	0,2880	2,86463	26,55
35,6641	14,90	0,7680	2,51544	11,87
38,0617	33,43	0,3360	2,36232	26,64
40,3557	20,22	0,7680	2,23317	16,11
45,3314	40,17	0,2880	1,99894	32,01
46,7897	13,30	0,5760	1,93998	10,60
48,5980	24,02	0,3840	1,87194	19,14
51,8033	60,15	0,2400	1,76339	47,94
56,0132	10,56	0,5760	1,64042	8,42
60,7108	14,07	0,3840	1,52425	11,22
63,3742	10,45	0,5760	1,46645	8,33
68,6596	12,61	0,6720	1,36589	10,05
71,3958	10,40	0,5760	1,32011	8,29
73,8496	11,52	0,4800	1,28219	9,18
83,9429	10.80	0.7680	1.15183	8.61

Tablo 3.17: DB-41 XRD sayısal değerleri.

DB-42 deneyinde XRD'ye ait spektrum Şekil 3.17'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.18'de gösterilmiştir. Katkılanan kimyasal La₂O₃'dür.

Şekil 3.17: DB-42 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	$FWHM[^{\circ}2Th]$	d–spac. [Å]	Re. In. [%]
13,6880	231,85	0,3840	6,46405	64,44
16,4754	359,80	0,2400	5,37618	100,00
18,0884	182,85	0,3840	4,90024	50,82
21,4560	49,93	0,4800	4,13813	13,88
25,1200	32,71	0,4800	3,54223	9,09
26,9792	30,27	0,2880	3,30219	8,41
27,9239	20,56	0,4800	3,19259	5,71
28,9657	340,83	0,2160	3,08009	94,73
42,7418	15,58	0,5760	2,11386	4,33
47,1265	23,61	0,4800	1,92690	6,56

Tablo 3.18: DB-42 XRD	sayısal	değerleri.
-----------------------	---------	------------

DB-43 deneyinde XRD'ye ait spektrum Şekil 3.18'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.19'da gösterilmiştir. Katkılanan kimyasal Sm₂O₃'dür.

Şekil 3.18: DB-43 XRD spektrumu.

P o. [° 2 Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
28,7630	23,53	0,3360	3,10133	100,00
37,7627	3,63	1,1520	2,38033	15,41
44,8895	5,92	0,5760	2,01759	25,14
51,4285	15,76	0,1920	1,77536	66,98
63,0285	3,14	0,4320	1,47366	13,34

Tablo 3.19: DB-43 XRD sayısal değerleri.

DB-44 deneyinde XRD'ye ait spektrum Şekil 3.19'dq görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.20'de gösterilmiştir. Katkılanan kimyasal Nd₂O₃'dür.

Şekil 3.19: DB-44 XRD spektrumu.

Po. [° 2Th.]	Heigh. [c.ts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
16,7295	16,90	0,2880	5,29509	51,08
21,7522	17,27	0,1920	4,08245	52,19
23,4693	16,42	0,1680	3,78750	49,62
25,7580	12,90	0,2160	3,45592	38,98
26,8855	11,65	0,2880	3,31349	35,22
27,8222	13,69	0,2880	3,20402	41,37
29,1331	33,09	0,2640	3,06277	100,00
31,1546	9,33	0,2160	2,86849	28,19
36,8295	6,49	0,2880	2,43848	19,60
37,9030	12,20	0,1920	2,37185	36,86
41,7353	4,52	0,3840	2,16248	13,67
45,0401	10,30	0,5760	2,01119	31,13
46,6839	7,61	0,3840	1,94413	22,99
48,6538	9,32	0,2880	1,86992	28,17
49,7017	3,91	0,5760	1,83292	11,83
51,6647	10,10	0,3840	1,76780	30,53

Tablo 3.20: DB-44 XRD	sayısal	değerleri.
-----------------------	---------	------------

DB-45 deneyinde XRD'ye ait spektrum Şekil 3.20'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.21'de gösterilmiştir. Katkılanan kimyasal La₂O₃'dür

Şekil 3.20: DB-45 XRD spektrumu.

P o. [° 2 Th.]	Heigh. [c.ts]	$FWHM[^{\circ} 2Th]$	d–spac. [Å]	Re. In. [%]
26,6081	5,45	0,5760	3,34740	22,08
28,7646	24,67	0,2400	3,10116	100,00
30,0056	8,00	0,5760	2,97566	32,43
32,2730	6,79	0,2880	2,77159	27,51
44,4886	9,30	0,7680	2,03483	37,69
48,2255	9,78	0,5760	1,88552	39,64
51,3731	11,22	0,3840	1,77714	45,47
68,4892	3,37	1,1520	1,36887	13,66

Fablo 3.21:	DB-45 XRD	sayısal	değerleri
--------------------	-----------	---------	-----------

DB-46 deneyinde XRD'ye ait spektrum Şekil 3.21'de görülmektedir. Bu XRD deneyine ait sayısal değerler Tablo 3.22'de gösterilmiştir. Katkılanan kimyasal Sm₂O₃'dür.

Şekil 3.21: DB-46 XRD spektrumu.

Po. [° 2Th.]	Heigh. [cts]	FWHM[° 2Th]	d–spac. [Å]	Re. In. [%]
27,2281	4,93	1,1520	3,27257	14,97
28,9357	32,91	0,1680	3,08321	100,00
30,8942	12,22	0,5760	2,89207	37,13
45,1342	18,35	0,2880	2,00722	55,76
46,6601	11,89	0,2880	1,94507	36,12
48,5012	10,04	0,6720	1,87545	30,50
51,5761	10,47	0,5760	1,77063	31,82

Tablo 3.22: DB-46 XRD sayısal değerleri.

3.4 Fotoluminesansın Enerji Seviyesi Diyagramları

Şekil 3.22 (a), dalgaboyu 455 nm'ye kadar olan absorpsiyon spektrumlarından elde edilen Nd^{3+} nin şematik bir enerji seviyesi diyagramını sunmaktadır. Yarıkararlı ${}^{4}F_{3/2}$ seviyesi ${}^{4}F_{5/2}$ ve ${}^{2}H_{9/2}$ 'den ışınımsal olmayan bozunma yoluyla doldurulur ve uyarılmış emisyon 1,06 µm'de ve diğer dalga boylarında elde edilebilir. Diyagramda yukarı doğru katı oklarla gösterilen uyarılmış hal soğurma geçişlerinin ${}^{4}F_{3/2}$ 'den de mümkün olduğu oldukça iyi bilinmektedir. Bu geçişlerin olasılıkları seviyeden seviyeye göre değişir ve önemli enerji kayıpları oluşturabilir.

Şekil 3.22: Nd⁺³ 'ün (a) kısmi enerji seviyesi diyagramı [23], (b) ⁴F_{5/2} ilgili geçişler [24].

Bir diğer çok önemli konu da, sistemin optimum performansı için gerekli parametreleri etkileyebilen Auger yukarı dönüşüm süreci [25, 26] olarak da bilinen enerji transferi yukarı dönüşüm süreci ve uyarılmış durum absorpsiyon geçişleridir. Yukarı dönüşüm sürecinin iki ana sonucu vardır: uyarılmış durum popülasyonunda bir azalma ve aynı zamanda malzemenin termal yükünde bir artış görülmüştür [27, 28]. Bu bahsedilen süreçler Şekil 3.22 (b)'de görüldüğü gibi şöyle bir süreçtir: ${}^{4}F_{3/2}$ metastabil seviyesine uyarılmış iki Nd³⁺

iyonunun ışınımsal olmayan etkileşimini içerir, yani bir iyon ${}^{4}I_{11/2}$ ve/veya ${}^{4}I_{13/2}$ seviyelerine bozunurken diğeri Şekil 3.22'de kesikli çizgilerle gösterildiği gibi daha yüksek seviyelere (${}^{4}G_{5/2}$, ${}^{4}G_{7/2}$, ${}^{2}K_{13/2}$, ${}^{2}G_{9/2}$...) terfi eder. Uyarılmış durumlar daha sonra hızlı çoklu fonon gevşemesi ile ${}^{4}F_{3/2}$ seviyesine geri dönerek ısı üretir ve aktif ortamın termal yükünü arttırır. Bu şekilde, bu geçişlerle ilgili enerji transferi yukarı dönüşüm süreçlerinin bilinmesi, bu işlemin diğer adı da Auger yukarı dönüşüm süreci, ${}^{4}F_{3/2}$ yayma seviyesinin ışınımsal olmayan kayıplarının tanımlanması ve anlaşılması gerekir.

Şekil 3.23'de görüldüğü gibi en belirgin piki 608 nm'de olan turuncu-kırmızı emisyon, 410 nm'lik yakın ultraviyole uyarımı üzerine Sm³⁺ iyonlarının ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ kaymasına atfedilmiştir.

Şekil 3.23: Sm⁺³ için enerji transfer sisteminin temsili [29].

Sentezlenen bileşik uyarıldıktan sonra potansiyel olarak hem radyasyonlu hem de radyasyonsuz yollarla enerji transfer ettiğinden, enerji seviyesi gösterimi Şekil 3.23 ile gösterilmiştir. Sm³⁺ iyonlarıyla ilgili enerji alışverişi mekanizması Şekil 3.23'de

göstermektedir. Katkı iyonu, 410 nm'lik ışınlama üzerine önce ${}^{4}K_{11/2}$ enerji seviyesini doldurur, ardından bu uyarılmış durumu ışınımsal olmayan bir şekilde ${}^{4}G_{5/2}$ enerji durumuna hızla gevşetir [30]. ${}^{4}G_{5/2}$ karakteristik emisyona yol açan ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$ ve ${}^{6}H_{11/2}$ seviyelerine geçişler yoluyla sonunda ışınımsal emisyona neden olan kararlı seviyedir [31]. En yoğun emisyon piki 608 nm'de ortaya çıkar ve yalnızca Sm³⁺ katkılı bileşik aracılığıyla parlak kırmızımsı-turuncu emisyondan sorumludur.

3.5 Fotoluminesans Spektrumları ve Analizi

Şekil 3.24'de 380 nm dolaylarında görülen şiddeti yüksek olan pik 5d \rightarrow 4f enerji seviyesi geçişten kaynaklanmaktadır. Literatür araştırmasına göre bu geçiş 5d enerji düzeyinden ${}^{2}F_{7/2}$ ve ${}^{2}F_{5/2}$ geçişlerden kaynaklandığı görülmüştür [32, 33]. Kırmızı ışık bölgesine denk gelen ışıldama 780 nm'de gerçekleşmiş bu da ${}^{4}F_{3/2}$ ve ${}^{4}I_{9/2}$ deki geçişten kaynaklanmaktadır [34]. DB-16'da B₂O₃ %10, DB-17'de %20, DB-18'de ise %30'dur. Mol miktarı artıkça FL şiddetinde bir azalma görülmüştür.

Dalga Boyu (nm)

Şekil 3.24: FL spektrumları.

Kobalt nitrat bileşiğine ait fotolüminesans spektrumları Şekil 3.25'de verilmiştir. DB-38 nolu FL spektrumunda molce $Co(NO_3)_3$ %25 ve B_2O_3 %100 ve4Zn0 %25 miktarlarındadır. DB-39 nolu FL spektrumunda molce $Co(NO_3)_3$ %12.5 ve B_2O_3 %100 ve 4Zn0 %12.5 miktarlarındadır. DB-40 nolu FL spektrumunda molce $Co(NO_3)_3$ %2.5 ve B_2O_3 %100 ve 4Zn0 %12.5 miktarlarındadır. DB-40 nolu FL spektrumunda molce $Co(NO_3)_3$ %2.5 ve B_2O_3 %100 ve 4Zn0 %12.5 miktarlarındadır. DB-40 nolu FL spektrumunda molce $Co(NO_3)_3$ %2.5 ve B_2O_3 %100 ve 4Zn0 %2.5 miktarlarındadır. Mol miktarı azaldıkça 380 nm deki piklerin şiddetleri artmaktadır. 640 nm'de her üç spektrum kesişmekte, molce $Co(NO_3)_3$ ve 4Zn0 miktarları $\frac{1}{4}$ miktarında azaldıkça 780 nm ve 800 nm'deki piklerin şiddetleri ve genişlikleri artmaktadır.

Şekil 3.25: FL spektrumları.

Şekil 3.26'da üç spektrumda sadece katkı maddeleri değişik diğer sentezleme miktar ve koşulları aynıdır: DB-41'de Nd₂O₃, DB-42'de La₂O₃ ve DB-43 de ise Sm₂O₃ katkı maddeleri ile ana bileşik hazırlanmıştır. Şekil 26'da görüldüğü gibi bu üç spektrumun iki ortak noktada

şiddetleri farklı olacak şekilde pik vermektedir: 380 nm ve 780 nm dalgaboylarında verdikleri piklerin yerleri aynı fakat şiddetleri farklıdır.

Şekil 3.26: FL Grafiği.

Şekil 3.27'de Şekil 3.26'da gösterilen spektrumlarda kullanılan katkı maddeleri molce %12.5'a yükseltilerek DB-44'de Nd₂O₃, DB-45'de La₂O₃ ve DB-46'da Sm₂O₃ ile ana bileşik hazırlanmış ve değişen optiksel özellikler için FL çekimleri gerçekleştirilmiştir.

Şekil 26 ve Şekil 27 için şu değerlendirmeler yapılabilir: DB-41 ve DB-44 spektrumları için şöyle bir açıklama yapılabilir: Görünür emisyonun, yani mavi, yeşil ve kırmızı emisyonların kaynağı, sığ kusur seviyelerindeki elektronların valans bandındaki foto uyarılmış deliklerle rekombinasyonuna atfedilmiştir. Ultraviyole (UV) emisyon geçişleri, ${}^{4}D_{3/2} \rightarrow {}^{4}I_{9/2}$ ve ${}^{2}P_{3/2} \rightarrow {}^{4}I_{11/2}$ veya ${}^{4}D_{3/2} \rightarrow {}^{4}I_{13/2}$ seviyelerinden Nd³⁺ iyon geçişinden kaynaklanmaktadır. Mavi, yeşil ve kırmızı emisyon bandı sırasıyla (${}^{4}I_{9/2} \rightarrow {}^{2}P_{3/2}$, ${}^{2}K_{15/2}$), (${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$, ${}^{4}G_{7/2}$) ve (${}^{4}I_{9/2} \rightarrow {}^{2}H_{11/2}$) geçişlerinden ortaya çıkar.

Şekil 3.27: FL Grafiği.

DB-42 ve DB-45 spektrumları için şöyle bir açıklama yapılabilir: La³⁺ için sırasıyla uyarma bantları ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2}$, ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{M}_{19/2}$, ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{15/2}$, ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{13/2}$, ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{11/2}$, ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2}$, ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2}$ (564 nm), ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$ (599 nm) ve ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{9/2}$ (646 nm) olmak üzere üç emisyon geçişi içeren emisyon spektrumunu sunmaktadır. Bunlar arasında ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$ (599 nm) geçişi parlak turuncu-kırmızımsı bir emisyon göstermiştir.

DB-43 ve DB-46 spektrumları için şöyle bir açıklama yapılabilir: Sm^{3+} için ${}^{6}\text{H}_{5/2}$ 'den farklı uyarılmış durumlara uyarılma nedeniyle oluşan uyarma spektrumları sırasıyla ${}^{4}\text{L}_{15/2}$ (390-

nm), ${}^{4}F_{3/2}$ (527-nm) ve ${}^{4}G_{5/2}$ (561-nm)'dir. Tüm bu geçişler arasında en yüksek geçiş, yani ${}^{6}H_{5/2} \rightarrow {}^{6}P_{3/2}$, 390 nm'de bulunmuştur. Emisyon spektrumlarını elde etmek için 563, 599, 645 ve 705 nm dalgaboylarında ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ (sarı), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (turuncu), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ (turuncu-kırmızı) ve ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ (kırmızı) emisyon geçişlerine bağlı dört emisyon geçişi tespit edilmiştir. Bunların hepsinde, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ 599 nm dalgaboyunda konumlanmış en yoğun geçiştir. Geçişlerin emisyon pik gücü, Şekil 3.26 ve 3.27'de görüldüğü gibi, Sm₂O₃ içeriğinin %2.5'dan %12.5 mol'e yükselmesiyle artmıştır. Emisyon yoğunluğundaki azalma, çapraz relaksasyon veya rezonans enerji transferi yoluyla konsantrasyon söndürme olaylarından kaynaklanmaktadır [35]. Sm₂O₃ içeriğinin artmasıyla Sm³⁺ iyonları arasındaki ana mesafe azalır ve bu da samaryum iyonları arasında çapraz relaksasyon yoluyla enerji transferini artırır. ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ ile ilişkili olan 645 nm'deki emisyon, 563 nm'deki ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ manyetik dipol geçişinden biraz daha fazla yoğunluğa sahip bir elektrik dipol geçişidir ve ana matrisin asimetrik olduğunu gösterir.

3.5 Sonuç ve Genel Değerlendirme

Çinko oksit, oda sıcaklığında 3,37 eV enerji bant aralığına ve yaklaşık 60 meV yüksek eksiton bağlanma enerjisine sahip çekici bir doğrudan bant aralıklı yarıiletken malzemedir. Opto-elektrik cihazlarda geniş uygulama alanı bulan ilginç akustik, optik, elektriksel ve kimyasal özellikler sunar. Çinko boratlar, polimerlerde, biyo-kompozitlerde, boyalarda ve seramiklerde fonksiyonel katkı maddeleri olan kimyasal ürünlerdir.

Bu tez çalışmasında sentezlenen bileşik monoklinik bir yapıya sahip olan Zn₃B₂O₆, nadir toprak iyonlarının katkılanması için önemli bir bileşik olarak kabul edilir. Çeşitli lüminesans özelliklerine sahip birkaç nadir toprak katkılayarak Zn₃B₂O₆ malzemesinin optiksel özellikleri incelenmiştir. Lantan oksit, neodimyum oksit, samaryum oksit ve kobalt nitrat katkılı çinko boratlı bileşiklerin optiksel özellikleri FL analitik tekniğiyle incelenmiştir. Yapılan deneyler sonucunda ortaya çıkan bu bileşiklerin kristal yapıları XRD ile aydınlatılmıştır.

Deney 1 için sentezlenen bileşikteki $3ZnO + B_2O_3 \rightarrow Zn_3B_2O_6$ deki B_2O_3 mol miktarı %10, %20 ve %30'a artırılınca dur FL şiddetinde bir azalma görülmüştür. 380 nm dolaylarında görülen şiddeti yüksek olan pik 5d \rightarrow 4f enerji seviyesi geçişten kaynaklanmıştır. Literatür araştırmasına göre bu geçiş 5d enerji düzeyinden ${}^{2}F_{7/2}$ ve ${}^{2}F_{5/2}$ geçişlerden kaynaklandığı görülmüştür. Kırmızı ışık bölgesine denk gelen ışıldama 780 nm'de gerçekleşmiş bu da ${}^{4}F_{3/2}$ ve ${}^{4}I_{9/2}$ deki geçişten kaynaklanmıştır.

FL spektrumunda molce $Co(NO_3)_3$ %25 ve B_2O_3 %100 ve4Zn0 %25 miktarından diğer FL spektrumunda molce $Co(NO_3)_3$ %12.5 ve B_2O_3 %100 ve 4Zn0 %12.5 miktarlarına değiştirilmiş ve sonra diğer FL spektrumunda molce $Co(NO_3)_3$ %2.5 ve B_2O_3 %100 ve4Zn0 %2.5 miktarlarına azaltılmıştır. Mol miktarı azaldıkça 380 nm deki piklerin şiddetleri artmaktadır. 640 nm'de her üç spektrum kesişmekte, molce $Co(NO_3)_3$ ve 4Zn0 miktarları ¹/₄ miktarında azaldıkça 780 nm ve 800 nm'deki piklerin şiddetleri ve genişlikleri artmaktadır.

Katkı maddeleri değişik diğer sentezleme miktar ve koşulları aynı olan üç spektrumda katkılanan maddeler molce %2.5 olacak şekilde Nd₂O₃, La₂O₃ ve Sm₂O₃'dür. Bu üç spektrumun iki ortak noktada şiddetleri farklı olacak şekilde pik vermektedir: 380 nm ve 780 nm dalgaboylarında verdikleri piklerin yerleri aynı fakat şiddetleri farklıdır.

Son olarak katkı maddeleri molce %12.5'a yükseltilerek Nd₂O₃, La₂O₃ ve Sm₂O₃ ile ana bileşik hazırlanmış ve değişen optiksel özellikler için FL çekimleri gerçekleştirilmiştir. Molce %2.5'dan %12.5'a Nd₂O₃ miktarı artırılınca görünür emisyonun, yani mavi, yeşil ve kırmızı emisyonların kaynağı, sığ kusur seviyelerindeki elektronların valans bandındaki foto uyarılmış deliklerle rekombinasyonuna atfedilmiştir. Ultraviyole emisyon geçişleri ve mavi, yeşil ve kırmızı emisyon bandı Nd³⁺ iyon geçişinden kaynaklanmaktadır.

Molce %2.5'dan %12.5'a La₂O₃ miktarı artırılınca La³⁺ için uyarma bantları 405 nm, 419 nm, 438 nm, 465 nm, 479 nm, 544 nm ve 554 nm'de görülmüştür. La³⁺'ün emisyon geçişleri, uyarılmış seviyeden daha düşük seviyelere tipik intra-4f geçişleridir. La³⁺'ün 564 nm, 599 nm ve 646 nm olmak üzere üç emisyon geçişi görülmüş olup 599 nm geçişi parlak turuncu-kırmızımsı bir emisyondur.

Molce %2.5'dan %12.5'a Sm₂O₃ miktarı artırılınca Sm³⁺ için uyarma spektrumları sırasıyla ${}^{4}L_{15/2}$ (390-nm), ${}^{4}F_{3/2}$ (527-nm) ve ${}^{4}G_{5/2}$ (561-nm)'dir. Tüm bu geçişler arasında en yüksek geçiş, yani ${}^{6}H_{5/2} \rightarrow {}^{6}P_{3/2}$, 390 nm'de bulunmuştur. Emisyon spektrumlarını elde etmek için 563, 599, 645 ve 705 nm dalgaboylarında ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ (sarı), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (turuncu), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ (turuncu-kırmızı) ve ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ (kırmızı) emisyon geçişlerine bağlı dört emisyon geçişi tespit edilmiştir. Bunların hepsinde, ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ 599 nm dalgaboyunda konumlanmış

en yoğun geçiştir. Geçişlerin emisyon pik gücü, Sm_2O_3 içeriğinin %2.5'dan %12.5 mol'e yükselmesiyle artmıştır. Emisyon yoğunluğundaki azalma, çapraz relaksasyon veya rezonans enerji transferi yoluyla konsantrasyon söndürme olaylarından kaynaklandığı literatür araştırılmasına göre açığa çıkarılmıştır. Sm_2O_3 içeriğinin artmasıyla Sm^{3+} iyonları arasındaki ana mesafe azalır ve bu da samaryum iyonları arasında çapraz relaksasyon yoluyla enerji transferini artırır. ${}^4G_{5/2} \rightarrow {}^6H_{9/2}$ ile ilişkili olan 645 nm'deki emisyon, 563 nm'deki ${}^4G_{5/2} \rightarrow {}^6H_{5/2}$ manyetik dipol geçişinden biraz daha fazla yoğunluğa sahip bir elektrik dipol geçişidir ve ana matrisin asimetrik olduğunu gösterir.

4. KAYNAKLAR

- [1] Niemyski T., Olempska, Z. (1962). The preparation of pure boron for semiconductor investigations. *Journal of the Less Common Metals*, 4(3), 235-243.
- [2] Schubert, D. M. (2011). Boron oxides, boric acid, and borates", In Kirk-Othmer Encyclopedia of Chemical Technology. *John Wiley & Sons: Hoboken*, NJ, USA.
- [3] Shang, G., Peacock, P.W., Robertson, J. (2004). Stability and band offsets of nitrogenated high-dielectric-constant gate oxides. *Applied Physics Letters*, 84(1), 106-108.
- [4] Wells, A. F. (1998). Structural Inorganic Chemistry. Oxford: Clarendon Press, 546-555.
- [5] Lide, D. R. (1998). Handbook of Chemistry and Physics, (87 ed.), Boca Raton, FL: CRC Press, 471-552.
- [6] Brady, G. S., Clauser, H. R., Vaccari, J.A. (2002). Materials Handbook, (15 ed.), New York: McGraw-Hill Professional, 779-784.
- [7] Donaldson, J. D., Beyersmann, D. (2005). Cobalt and Cobalt Compounds, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, doi:10.1002/14356007.a07_281.pub2.
- [8] Tikhomirov, G. A., Znamenkov, K. O., Morozov, I. V., Kemnitz, E., Troyanov, S. I. (2002). Anhydrous Nitrates and Nitrosonium Nitratometallates of Manganese and Cobalt, M(NO3)2, NO[Mn(NO3)3], and (NO)2[Co(NO3)4]: Synthesis and Crystal Structure. Z. anorg. allg. Chem. 628(1): 269–273. doi:10.1002/1521-3749(200201).
- [9] Lu, X. (2005). Spectroscopy of Ca₃(BO₃)₂: Dy³⁺ crystal. Journal of Physics and Chemistry of Solids, 66(10), 1801-1805.
- [10] Ropp, R.C. (2013). Encyclopedia of the Alkaline Earth Compounds, *Elsevier Science*, 498-499.
- [11] Fujimoto, Y., Yanagida, T., Koshimizu, M., Asai, K. (2015). Photoluminescence, photo-stimulated luminescence and thermoluminescence properties of CaB₂O₄ crystals activated with Ce³⁺. *Optical Materials*, 41, 49-52.
- [12] Zhou, S., Lou, B., Lou, L., Wen, J., Yin, M. (2021). First-principles study of persistent luminescence mechanisms in CaB₂O₄: Ce³⁺. *Optical Materials*, 111, 110647.
- [13] Huang H. S., Liu, H. Z. (2014). Enhanced photoluminescence property of CaB₂O₄: Eu³⁺ phosphor prepared by calcining the Ca₄B₁₀O₁₉.7H₂O: Eu³⁺ precursor. *Materials Research Bulletin*, 49, 88-93.

- [14] Huang, H. (2016). Preparation, characterization and luminescent properties of a new hydrous red phosphor CaB₂O₄·0.5 H₂O: Eu³⁺. *Optik*, 127(5), 3044-3048.
- [15] Diaz, A., Keszler, D. A. (1996). Red, green, and blue Eu²⁺ luminescence in solid-state borates: A structure-property relationship. *Materials Research Bulletin*, 31(2).
- [16] Keszler, D. A., Chang, K. (1998). CaAl₂(BO₃)₂O: Crystal Structure. *Materials Research Bulletin*, 33(2), 299-304.
- [17] Tian, C., Chen, X., Shuibao, Y. (2015). Concentration dependence of spectroscopic properties and energy transfer analysis in Nd³⁺ doped bismuth silicate glasses. *Solid State Sciences*, 48, 171-176.
- [18] Fu X., Fang, L. Niu, S., Zhang, H. (2013). Luminescence properties and energy transfer investigations of SrMgSi₂O₆: Ce, Tb phosphors. *Journal of Luminescence*, *142*, 163-166.
- [19] Hachani S., Guerbous, L. (2019). Synthesis, Luminescence, and Energy Transfer Properties of YPO₄:Gd³⁺, Eu³⁺ and YP₃O₉:Sm³⁺, Eu³⁺ Phosphors. *Journal of Fluorescence*, 29, 665-672, 2019.
- [20] Gopi S. (2017). Synthesis and luminescence characteristics of CaB₂O₄: Er³⁺, Li+ phosphor. *Journal of Luminescence*, *187*, 113-120.
- [21] Huang, H. (2016). Preparation, characterization and luminescent properties of a new hydrous red phosphor CaB₂O₄·0.5 H₂O: Eu³⁺. *Optik*, 127(5), 3044-3048.
- [22] Jose, S. K. (2018). Synthesis and photoluminescence characteristics of near white light emitting CaB₂O₄: Dy³⁺, Li⁺ phosphor. *Journal of Physics and Chemistry of Solids*, 119, 166-174.
- [23] De Camargo, A. S. S., Jacinto, C., Catunda, T., Nunes, L. A. O. (2006). Auger upconversion energy transfer losses and efficient 1.06 μm laser emission in Nd³⁺ doped fluoroindogallate glass. *Appl. Phys. B.* 83, 565-569. doi: 10.1007/s00340-006-2154-9
- [24] Monteseguro, V., Rathaiah, M., Linganna, K. (2015). Chemical pressure effects on the spectroscopic properties of Nd³⁺-doped gallium nano-garnets. *Optical Materials Express*, 5(8), 1661-1673.
- [25] Doualan, J.L., Maunier, C., Descamps, D., Landais, J., Moncorg'e, R. (2000). Excitedstate absorption and up-conversion losses in the Nd-doped glasses for high-power lasers. *Phys. Rev. B*, 62, 4459.
- [26] Payne, S., Wilke, G. D., Smith, L. K., Krupke, W. F. (2005). Upconversion effect on fluorescence quantum efficiency and heat generation in Nd³⁺-doped materials. *Optical Express.* 13(6), 263.

- [27] Jacinto, C., Oliveira, S. L., Catunda, T., Andrade, A. A., Myers, J., Myers, M. (2005).
 Evaluation of upconversion losses in Nd³⁺-doped materials by thermal lens. *Opt. Express*, 13, 2040.
- [28] Jacinto, C., Catunda, T., Jaque, D., Garc'ıa-Sol'e, J. (2005). Ordering in Cs₂CuCl₄:
 Possibility of a proximate spin liquid. *Phys. Rev. B*, 72, 174417.
- [29] Khatkar, A., Lata, S. (2023). Synthesis and optoelectronic aspects of orange-red light emitting Sm3+ doped vanadate nanomaterials for pc-WLEDs. J Mater Sci: Mater Electron, 34, 2136. https://doi.org/10.1007/s10854-023-11587-0
- [30] Hooda, A., Khatkar, A., Boora, P. Devi, S., Sehrawat, P., Phogat, P., Khatkar, S. P., Taxak, V. B. (2020). Synthesis and characterization of CuO–Mn₃O₄: application to chromium (VI) photocatalytic reduction. *J. Lumin.* 224, 117277.
- [31]. Devi, S., Taxak, V. B., Chahar, S., Dalal, M., Dalal, J., Hooda, A., Khatkar, A., Malik,
 R. K., Khatkar, S.P. (2019). Photoluminescence performance of green light emitting terbium. *Ceram. Int.* 45, 15571.
- [32] Fujimoto, Y., Yanagida, T., Koshimizu, M., Asai, K. (2015). Photoluminescence, photo-stimulated luminescence and thermoluminescence properties of CaB₂O₄ crystals activated with Ce³⁺. *Optical Materials*, 41, 49-52.
- [33] Fu, X., Fang, L., Niu S., Zhang, H. (2013). Luminescence properties and energy transfer investigations of SrMgSi₂O₆: Ce, Tb phosphors. *Journal of Luminescence*, *142*, 163-166.
- [34] Tian, C., Chen, X., Shuibao, Y. (2015). Concentration dependence of spectroscopic properties and energy transfer analysis in Nd³⁺ doped bismuth silicate glasses. *Solid State Sciences*, 48, 171-176.
- [35] Mukamil, S., Sarumaha, C., Wabaidur, S. M., Islam, M. A., Khattak, S. A., Kothan, S., Shoaib, M., Khan, I., Ullah, I., Kaewkhao, J., Rooh, G. (2022). Photoluminescence and optical transition properties of Sm³⁺ activated lead-borate glasses. *Optical Materials*, *129*, 112486. https://doi.org/10.1016/j.optmat.2022.112486

5.ÖZGEÇMİŞ

Kişisel Bilgiler

Adı Soyadı : Doğuşcan BOŞNAK

Öğrenim Bilgileri

Derece	Okul/Program	Yıl
Y. Lisans	Balıkesir Üniversitesi/Fizik	2024
Lisans	Balıkesir Üniversitesi/Fizik	2016
Lise	Gümüşhane Anadolu Meslek Lisesi	2009