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Abstract
The goal of this work is to determine how the rate ofNi deposition rates affect the structural
characteristics that regulate themagnetization ofNi/Almultilayer thinfilms sputtered on flexible
acrylic acetate polymer substrates. Thefilmswith a 5[Ni(20 nm)/Al(10 nm)] structurewere gradually
sputtered as different Ni deposition rates in the total thickness of 150 nm.With an increase in the rate
ofNi deposition, theNi contents increased from61.5% to 69.6%. And, X-ray diffraction analysis
verified that the films featured a face-centered cubic structurewith variable peak intensities. Also, the
scanning electronmicroscopy surfacemorphology analyses revealed that variations in the film
surfaces were a result of the deposition rates. Formagneticmeasurements, the differences in the
structural analysis were observed to cause a notable variation in saturationmagnetization,MS, and
coercivity, HC values. Accordingly,MS values increased consistently between 359.0 and
389.7 emu cm−3, butHC values decreased from around 34–32 to 28 Oewith the increase inNi
deposition rate from0.02 to 0.10 nm s−1. It is also observed that when theNi layers are generated at
very fast deposition rates, theNi/Almultilayerfilms have a highMS/HC ratio, which is significant for
magnetic sensors. It has been concluded that themagnetisation ofNi/Almultilayer thinfilms can be
controlled by the structural properties adjusting theNi deposition rate.

1. Introduction

Formany years, scientists have been interested in studyingmagnetic structures because of their potential
applications in technology [1–8]. Research has frequently focused on examining themagnetic characteristics of
thematerial and producing themwith the needed features. Due to their high saturationmagnetisation,MS and
low coercivity, HC values,magnetically highly efficientmaterials are crucial parts of electromagnetic devices as
magnetic isolators or inmicro-electromechanical sensors andmagnetic random-accessmemories [9–12]. The
sputtering approach is one of severalmethods utilised to produce these kinds of nanoscalemagnetic structures
[12–14]. Thismethod can be used to deposit high-quality thinfilmswith the required characteristics. By
adjusting the fabrication settings, the sputtering technique allows one tomodify the physical properties of the
films, including theirmagnetic properties. The deposition rate is one of the elements influencing the structure of
thefilms in this context [13–15]. The effects of variousNi layer thicknesses andAl layer thicknesses on the
magnetic characteristics of Ni/Almultilayer filmswere examined and thefindings were described in detail in the
studies byKarpuz et al [16] andKaplan et al [17], respectively. As far aswe are aware, no research has been done
to examine how the various deposition rates influence themagnetisation ofNi/Almultilayer thin films, which
are crucial formagnetic sensors andwhose structural characteristics regulatemagnetisation. The outcome of
this study is anticipated to address this shortcoming and significantly advance thefield ofmagnetic sensor
applications and literature.
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2. Experimental

Ni/Almultilayer thin filmswere deposited onflexible polymer substrates (0.168± 0.006 mm thick, Jeje
Products, Acrylic Acetate Clear Sheets, Spain) by sputtering technique (MANTIS,Q-Prep 500, UK). This system
also has features that allow the deposition rate of each layer to be controlled. Before starting the fabrication of the
films, high-purity nickel and aluminium targets (Kurt J. Lesker Company, 99.99%)with a thickness of 2 mmand
a diameter of 50.8 mmwerefirst cleanedwith distilledwater followed by isopropyl alcohol in an ultrasonic bath
(Isolab, 621.05.006, Germany) for 10 min each. The substrates were also prepared as theway the target was done.
And, the average surface roughness valuewas around 30 nmas given by themanufacturer. Thefive substrates
were cut by punching (6 mm in diameter) and used for sample fabrication. After cleaning, the targets and the
substrate were placed in the vacuumchamber. The distance between the substrate and target sources in the
vacuumchamberwas 125 mm. For deposition, the pressure was first reduced to below 6.00× 10−3mBar using a
rotary vane pump. A turbomolecular pumpwas used until chamber pressure dropped to 5.00× 10−6mBar to
obtain a suitable vacuumenvironment for the fabrication and pure argon gaswas introduced into the chamber
for plasma creation. The argon gasflow ratewas 60 sccm. The deposition of the filmswas carried out at a
pressure range of approximately 4–5× 10−3mBar. The substrate temperaturewasmeasured as 23± 3 °C
during fabrication. The substrate was rotated (20 rpm) throughout the sputtering process to obtainmore
uniform films in terms of thickness. The rotational speedwasmeasured using a handmade tachometer with an
accuracy of± 0.1 rpm. Film thicknesses were determined using a quartz crystalmicrobalance (QCM) thickness
sensor connected to a thicknessmonitor (Sycon, STM-100/MF,US). After their fabrication, allfilmswere stored
in vacuumdesiccators until analysis. Figure 1 shows an image of the deposited film.

To investigate the effects of deposition rate on the structural andmagnetic properties ofNi/Almultilayer
thinfilms, theNi deposition ratewas systematically varied from0.02 to 0.10 nm s−1 in steps of 0.02 nm s−1.
Different deposition rates forNi layers were adjusted by changing the electrical current value that occurred in the
vacuumchamber. The electrical current values needed for different deposition rates ofNi layers andAl layers
were added to table 1. The time between each onewas around 60 s. TheQCM thicknessmonitor also helped to
observe the deposition rate values. Al deposition rate was kept constant at 0.02 nm s−1 in the fabrication of all
films. Filmswith 5[Ni(20 nm)/Al(10 nm)] structures are illustrated infigure 2. A bilayer structure was
formulated as [Ni(20 nm)/Al(10 nm)]. To obtainmultilayer structure, the bilayer was repeated five times to
obtain totalfilm thickness of 150 nm. In other words, the number 5 is the number of repetitions of bilayer.

Content analyses ofNi/Almultilayer filmswere carried out using an Energy-dispersive X-ray Spectroscopy
(EDX, EDAXElement, AMETEK,USA). The crystal structure of the filmswas detected using anX-ray
Diffractometer (Bruker, AdvancewithDavinci Design for XRD2,UK)with a LYNXEYEXE x-ray detector.
Diffraction patterns of the filmswere obtained by theX-rayDiffraction (XRD)method usingCu-Kα radiation
(λ= 0.154059 nm). Diffraction patterns were obtained between 30° and 80° by scanning the 2θBragg angle in
0.02° steps. The surfacemorphologies of the filmswere observed using a scanning electronmicroscope (SEM;

Figure 1.As deposited film samplewith the ruler.
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Table 1.Electrical currents, atomic contents, calculated crystal structure parameters andmagnetic property values of the sputteredNi/Alfilms at differentNi deposition rates.

Deposition rates

(nm/s)
Electrical cur-

rents (mA) Contentsa Crystal parameters Magnetic values

Ni Al Ni Al Ni (at.%) Al (at.%) a (nm) t (nm) MS (emu/cm3) HC (Oe) MS/HC Mr (emu/cm3) Mr/MS

0.02 47 61.5 38.3 0.4084 9.1 359.0 32 11.18 228.3 0.636

0.04 82 — — 0.4080 9.2 371.4 34 10.92 262.3 0.706

0.06 0.02 112 216 65.5 34.3 0.4075 9.3 375.1 30 12.42 191.0 0.509

0.08 165 — — 0.4067 9.5 387.9 28 13.89 143.2 0.369

0.10 217 69.6 30.2 0.4063 9.6 389.7 28 14.43 128.8 0.331

a Allfilms contained up to 0.2%of impurities such asH,O andC.
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Hitachi, SU5000, Japan).Magnetic analyses ofmultilayer filmswere carried out at room temperature using a
vibrating samplemagnetometer (VSM;ADETECHNOLOGIESDMS-EV9,USA).Magneticmoments
measured fromVSMare divided by the calculated volume of thefilms tofind themagnetisation values of
hysteresis loops.Hysteresis loopswere obtained at intervals (the smallest one is 1 Oe) between± 20 kOe. The
magneticmeasurement sensitivity of themagnetometer was 1× 10−6 emu. For themagneticmeasurement
process, the samples were cut into circles with a diameter of 6 mm to avoid shape anisotropy, see figure 1.

3. Results and discussion

3.1. Contents of thefilms
The analysis results ofNi/Almultilayer thinfilms obtained by EDX are presented in table 1. Content analysis
shows thatfilmswithNi deposition rates of 0.02, 0.06, and 0.10 nm s−1 consist of 61.5, 65.5, and 69.6%Ni
atoms, respectively. Except for 0.2% consisting ofOxygen,Hydrogen andCarbon atoms coming from the
substrate, the rest of thefilm contents were determined to beAl. According to the results, theNi contents in the
films increasedwith the increase inNi deposition rate. The contents of the films show the same trend as the
content ratios obtained in the study [16], inwhich the effects of different layer thicknesses ofNi layers forNi/Al
multilayer filmswere investigated.

3.2. Crystal structures of thefilms
Figure 3 shows theXRDpatterns ofNi/Almultilayer thin films produced at differentNi deposition rates. In
addition, no peakwas observed in the pattern of the substrate due to its amorphous structure and therefore it
was not shown in thefigure. As seen in the XRDpatterns, some differences in the peak intensities of the
diffraction patternswere observed by changing theNi deposition rate. TheXRDpatterns of theNi/Almultilayer
thinfilms have (111) peak of fccNi at 2θ≈ 44.7° and (111), (200), (220) and (311)peaks of Al at 2θ≈ 38.4°,
44.7°, 64.9° and 78.2° according to the JCPDS 88-2326 forNi and JCPDS 04-0787 for Al, respectively. As seen in
figure 3, with the increase inNi deposition rate, the peak of the (111) plane of the face-centred cubic (fcc)Al,
which is formed at Bragg angle of∼38.4°. The intensity of peaks in anXRDpattern is related to the atoms in the
crystal lattice such as atomic number [18]. The higher intensity of the Al peakmight come fromdepending on its
atomic element numberwhich is smaller thanNi. The peak numbered as 1was almost the samewhile that of the
peak formed at∼44.7°which is numbered as 2 and labelled as Al (200)+Ni (111) increases gradually. This
increase in the intensity can be attributed to the increase in theNi content of the film.Unlike the presented
study, no peak at the angle of∼38°was observed in the XRDpattern ofNiAl alloyfilms investigated in [19]. This
may be because the investigated films have amultilayered structure or different substrates used in the presented
study.Moreover, it has been determined that the peaks seen∼64.9° and∼78.2° belong to the Al fcc (220) andAl
fcc (311) planes, respectively, and the intensities of these peaks decrease with the increase ofNi deposition rate.
This change is consistent with the result obtained from the analysis of the film content. According to the crystal
structure analysis, it was understood that allfilms crystallized in the fcc structure. The same peakswith the
present studywere also detected in theXRDpattern of as-depositedNi/Almultilayer thin filmwith bilayer
thickness of 30 nm inwhich a study [15] that investigated anisothermal solid-state reactions ofNi/Al.

Figure 2. Schematic cross-section of theNi/Almultilayer thinfilm structure.
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Figure 3.TheXRDpatterns of thefilms producedwith different deposition rates ofNi layers (a) 0.02, (b) 0.04, (c) 0.06, (d) 0.08 and (c)
0.10 nm s−1.

Figure 4. SEM images of (a) substrate and themultilayers sputteredwith differentNi deposition rates at (b) 0.02 and (c) 0.10 nm s−1.
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The crystallite sizes (given as t in table 1) of thefilmswere calculated using the Scherrer equation as given in
[18]. The crystallite sizes ofNi/Almultilayer films deposited atNi deposition rates of 0.02, 0.04, 0.06, 0.08 and
0.10 nm s−1 were found to be 9.1, 9.2, 9.3, 9.5 and 9.6 nm, respectively. In addition, lattice constant (a) values
were also calculated and found to be 0.4084, 0.4080, 0.4075, 0.4067 and 0.4063 nm for the filmswithNi
deposition rates of 0.02, 0.04, 0.06, 0.08 and 0.10 nm s−1, respectively. In other words, the decrease in the
content of Al resulting from the increase in theNi deposition rate also caused a decrease in the lattice constant
values.

3.3.Morphologies of thefilms
Figure 4 shows the SEM images of (a) substrate andNi/Almultilayers (b) at the lowest (c) the highest Ni
deposition rates. As seen infigure 4(a), although the substrate has some small defects, the films in
figures 4(b)–(c)) are properly deposited.While there are some grain structures and dark points on thefilm
surface producedwith a low deposition rate, these structures are not available on thefilm surface sputtered at the
high deposition rate. The sizes of these grains, randomly distributed on the surface, varied between 0.2 μmand
0.4 μm. Pointmeasurements of EDX taken on these grains revealed that the surface grains have the same content
as the rest of thefilm surface.When thefilmswere producedwith a high deposition rate, the surface had a
relatively simpler and uniform appearance. Considering the relatively higher deposition rate, it is understood
that better-quality film surfaces are obtained. As can be seen from the SEM images, the change inNi deposition
rates resulted in some differences in themorphologies of the film surfaces.

3.4.Magnetic properties of thefilms
Formagnetic analysis, hysteresis loops ofNi/Almultilayer thinfilms sputtered at differentNi deposition rates
are plotted infigure 5±5 kOe and inset±100 Oe. Saturationmagnetisation,MS values of thefilmswithNi
deposition rates of 0.02, 0.04, 0.06, 0.08 and 0.10 nm s−1 were detected to be 359.0, 371.4, 375.1, 387.9 and
389.7 emu cm−3, respectively. It was observed that theMS values of thefilms increased by increasing theNi
deposition rate (see figure 5 and table 1). In otherwords, the increase in theNi deposition rate causes the density
of theNi layer of the films to increase, thus increasing theMS values of the films. Coercivity, HC values offilms
according to different deposition rates are given in table 1.When the table is examined, it is seen thatHC values
tend to decrease between 34 Oe and 28 Oewith the increase ofNi deposition rate. The decrease in theHC values
of the films can be associatedwith the decrease in the amount of Al in the film content and, simpler and uniform
surfacemorphologies with the increase in theNi deposition rate. There are no studies about themagnetic
properties ofNi/Almultilayer thinfilms except for our previous two investigations [16, 17]. The saturation
magnetisation and coercivity values under study are found to be consistent with these studies. It was found that
thefilmdepositedwith aNi deposition rate of 0.10 nm/s had the highestMS and lowestHC values.

Figure 5.The hysteresis loops of thefilms producedwith differentNi deposition rates between±5 kOemagnetic field and inset
between±100 Oemagneticfield.
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As displayed in table 1,MS/HC ratios of the filmswere also calculated and this ratio was found to be 11.18,
10.92, 12.42, 13.89 and 14.43 forfilms producedwithNi deposition rates of 0.02, 0.04, 0.06, 0.08 and
0.10 nm s−1, respectively. As can be clearly seen, the highestMS/HC ratiowas obtained in the filmwhere theNi
deposition ratewas 0.10 nm s−1. In our previous study [16], it was emphasized that theMS/HC ratio increased
by decreasing theNi layer thickness and concluded that obtainingNi/Almultilayer filmswith a highMS/HC

ratio could be achievedwith relatively low thickness values. The remanentmagnetisation,Mr values determined
forNi/Almultilayer filmswithNi layer deposition rates of 0.02, 0.04, 0.06, 0.08 and 0.10 nm s−1 were found to
be 228.3, 262.3, 191.0, 143.2 and 128.8 emu cm−3, respectively (see table 1). As shown in table 1,magnetic
squareness (Mr/MS) valueswere also calculated for the films. The values are 0.636, 0.706, 0.509, 0.369 and 0.331
for thefilms produced at 0.02, 0.04, 0.06, 0.08 and 0.10 nm s−1, respectively. Although themagnetic squareness
values increased as theNi deposition rate increased from0.02 to 0.04 nm s−1, they gradually decreased for
further rate values. The same trendwas also observed for theMr values. Since theMr value is an independent
parameter [12], changes in crystallite sizes andfilm surfacemorphologymay be the reason for the change in
Mr/MS values.

4. Conclusions

Within the scope of this study, the dependence ofmacroscopicmagnetic behaviour controlled by structural
properties was investigated, which are affected by the deposition rate of Ni layers inNi/Almultilayer thin films.
For this purpose, using the sputtering process, a series of 150 nm thick 5[Ni(20 nm)/Al(10 nm)]filmswere
deposited on acrylic acetate substrates. Thefindings showed that as theNi layer deposition rates increased from
0.02 to 0.10 nm s−1, theNi contents of the films increased from61.5% to 69.6%. All of the films have a face-
centred cubic structure, as validated by structural analysis. And, the results of surface research indicated that the
creation ofmore favourable andmoderate film surfaces was facilitated by relatively high deposition rates. The
microstructural alterations on the film surface and the variation in the concentration of Al in themultilayers
were identified as the causes of theHC change. It was found that changes in surface shape and film contents
brought about by variations in the rate of deposition resulted in changes inmagnetic characteristics likeMS and
HC,which are significant for sensor applications.
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