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Abstract. In this work, a dynamical system approach for solving nonlinear
programming (NLP) problem based on a smoothed penalty function is inves-
tigated. The proposed approach shows that an equilibrium point of the dy-
namic system is stable and converge to optimal solutions of the corresponding
nonlinear programming problem. Furthermore, relationships between optimal
solutions for smooth and nonsmooth penalty problem are discussed. Finally,
two practical examples are illustrated the applicability of the proposed dynamic
system approach with Euler scheme.
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1.Introduction

Consider the nonlinear programming (NLP) problem

(1)
minimize f(x);
subject to gi(x) > 0; i = 1; 2; :::;m;

where x = (x1; x2; :::; xn)
T 2 Rn, f : Rn �! R and g = (g1; g2; :::; gm)

T
:

Rn �! Rm (m � n) are continuously di¤erentiable functions. LetX = fx : gi(x) > 0;
i = 1; 2; :::;mg be a feasible set for the problem (1). We shall study algorithms
for solving the problem (1) based on penalty functions. To obtain a solution

1Corresponding Author.



of (1), the penalty function method solves a sequence of unconstrained opti-
mization problems. A well known penalty function for this problem is given
by

(2) F (x; p) = f(x)� p
mX
i=1

p(gi(x))

where p(t) = min (0; t) and p > 0 is a auxiliary penalty variable. The penalty
function F (x; p) is nonsmooth. The corresponding unconstrained optimization
problem of (1) is de�ned as follows;

(3) min F (x; p) s.t. x 2 Rn.

Further information can be found in Luenberger [9].

Smoothing approximation for this kind of nonsmooth penalty functions have
been seen in literature. In [12], Pinar and Zenios studied a quadratic smoothing
approximation to nonsmooth exact penalty function for convex optimization
problem. They also used a smoothing method for solving optimization problems
with neural network structure in [17]. Moreover, similar studies can be found
in the references Chen-Mangasarian [3], Meng et al. [10], Yang et al. [16] and
the references therein.

In this work, we will use parallel smoothing techniques as in [10], [12] and [16] for
solving the optimization problem (1) with dynamical system approach. This ap-
proach shows that the stable equilibrium point of the dynamic system is also the
optimal solution of the corresponding optimization problem, respectively. We
also put forward relations between the optimal solution of nonsmooth penalty
problem and smooth penalty problem.

The rest of work is organized as follows. In Section 2, we will present a smoothing
model for nonsmooth penalty function (2) and construct a dynamic system
based on smooth penalty function. Moreover, we will prove that the trajectory
of dynamical system can converge to an optimal solution of the smooth penalty
problem and discuss the stability of equilibrium point. A Lyapunov function is
set up during the procedure. In addition, we will investigate relations between
smooth and nonsmooth penalty function with dynamic system. In Section 3,
two illustrative examples will be given to show the e¤ectiveness of proposed
system. Conclusions are given in Section 4.

2. A Dynamical System with Smoothed Penalty Function

We de�ne a function p�(t) for smoothing p(t) = min (0; t) as follows,

p�(t) =

8><>:
t� 3�t 13 � 1

4� if t 6 �,
1
8
t3

�2
if � 6 t 6 0,

0 if t > 0.



Then , we see that lim
�!0

p�(t) = p(t). Now consider the smoothed penalty function

for (1) given by

(4) F (x; p; �) = f(x)� p
mX
i=1

p�(gi(x)),

where p > 0. Hence, the unconstrained optimization problem of (1) is de�ned
as

(5) min F (x; p; �) s.t. x 2 Rn.

Thus lim
�!0

F (x; p; �) = F (x; p) for any given p.

In order to solve the unconstrained optimization problem (5), a new dynamic
system can be described by the following ordinary di¤erential equations (ODEs)

(6)
dx
dt = �rxF (x; p; �) ;
x(t0) = x(0):

The method based on ODEs for solving optimization problems have been pro-
posed by Arrow and Hurwicz [1], Fiacco and Mccormick [6], and Evtushenko [5].
Furthermore, Brown and Biggs [2] and Schropp [14] are shown that ODEs based
methods for constrained optimization can be perform better than some conven-
tional methods. Recently, Jin [7], Özdemir [11] and Wang [15] have prepared a
new di¤erential equation approach for solving NLP problems.

Stability of nonlinear dynamic systems plays an important role in systems the-
ory and engineering. There are several approaches in the literature. Most of
them are based on Lyapunov theory. In the following, we will give some basic
de�nitions of Lyapunov stability theory.

De�nition 2.1 A point x� is called an equilibrium point of (6) if it satis�es the
right hand side of the equations (6), [4].

De�nition 2.2 Let 
 be an neighbourhood of x�. A continuously di¤erentiable
function V is said to be Lyapunov function at the state x� for dynamic system
(6) if satisfy the following conditions:

a) V (x) is equal to zero for the equilibrium point x�,

b) V (x) is positive de�nite over 
 some neighbourhood of x�,

c)
dV

dt
is semi-negative de�nite over 
 some neighbourhood of x�; [8].

Theorem 2.3 An equilibrium point x� is stable if there exits a Lyapunov func-
tion in some neighbourhood 
, [8].



De�nition 2.4 A point x� is said to be stable in the sense of Lyapunov if
for any x(t0) = x(0) and any scalar " > 0 there exits a � > 0 such that if
kx(0)� x�k < �, then kx(t)� x�k < � for t � t0, [4].

Now we investigate the relationship between optimal solutions of the nonsmooth
penalty problem (3) and the smooth penalty problem (5) with an equilibrium
point of the dynamical system (6). The following theorems will give a rela-
tion between the stable equilibrium point of the dynamic system (6) and the
minimizer of the problem (5), respectively.

Theorem 2.5 If x� is an stable equilibrium point of the dynamic system (6)
under the parameter p and �, then x� is the local minimizer of the problem (5).

Proof. Let x(t) be a solution of the dynamical system (6). Then from the
assumption, stability of the equilibrium point x�, we have for any x(t0) = x(0)
and any scalar � > 0, there exits a � > 0 such that if kx(0)� x�k < � then,
kx(t)� x�k < � for t � t0. Therefore

F (x�; p; �)� F (x(0); p; �) =

x�Z
x(0)

dF (x; p; �)

dt
dt

=

1Z
0

nX
k=1

@F

@xk

dxk
dt
dt

= �
1Z
0

nX
k=1

�
dxk
dt

�2
dt

� 0.

Hence, x� is a local minimizer to the problem (5).

Theorem 2.6 If x� is a local minimizer of the problem (5) under the parameter
p and �, then x� is a stable equilibrium point of the dynamic system (6).

Proof. Let we de�ne a suitable Lyapunov function for investigate the stability
of the dynamic system (6) as follow;

V (x) = F (x; p; �)� F (x�; p; �).

Note that since x� is a local minimizer of the problem (5), V (x) is positive
de�nite on some neighbourhood 
 about the point x�. Hereby, we say that
the �rst two conditions in De�nition 2.2 are provided for candidate Lyapunov



function. Furthermore, by the time derivative of V (x), we have

dV

dt
=

@V

@x

dx

dt

=

�
@F (x; p; �)

@x

� �
�@F (x; p; �)

@x

�T
= �

�
@F (x; p; �)

@x

�2
� 0.

Eventually, x� is stable for the dynamic system (6).

We now begin to introduce the connection between the nonsmooth (2) and
smooth penalty function (4) with the following lemma.

Lemma 2.7 For all x 2 Rn and � < 0 we have

1

4
mp� � F (x; p; �)� F (x; p) � 0.

Proof. From the de�nition of p�(t) and p(t), it follows that

1

4
� � p(t)� p�(t) � 0.

Similarly, we can write that

1

4
� � p(gi(x))� p�(gi(x)) � 0; i = 1; 2; :::;m.

Therefore,
1

4
m� �

mX
i=1

p(gi(x))�
mX
i=1

p�(gi(x)) � 0.

By the equations (2) and (4) give the result.

Theorem 2.8 Let
�
�j
	
! 0 be a sequence of negative numbers and xj an opti-

mal solution to the problem min
x2Rn

F (x; p; �j). Assume that x
� be an accumulating

point of the sequence fxjg. Then x� is an optimal solution to min
x2Rn

F (x; p).

Proof. Since
1

4
mp�j � F (x; p; �j)� F (x; p) � 0

for every j , we have

(7) min
x2Rn

�
1

4
mp�j

�
� xj � min

x2Rn
F (x; p) � 0.



Here, if j �!1 in (7), we obtain

fxjg1j=1 �! min
x2Rn

F (x; p)

since
�
�j
	
! 0. Also from assumption, x� is a accumulating point of the fxjg,

there is a subsequence fxjkg of the fxjg such that

fxjkg �! x�; k �!1.

So, by the uniqueness of the limit, we get

min
x2Rn

F (x; p) = x�:

De�nition 2.9 If x 2 X and if gi(x) � � for i = 1; 2; :::;m, then x is said to
be an �-feasible.

Theorem 2.10 Suppose that x� be an optimal solution to the problem (3) and
_
x be an optimal solution to (5). Then

1

4
mp� � F

�_
x; p; �

�
� F (x�; p) � 0.

Proof. Using Lemma 2.7 and optimality conditions for x� and
_
x, it follows that

F (
_
x; p; �) � F (x�; p; �) � F (x�; p)

which gives

(8) F (
_
x; p; �)� F (x�; p) � 0.

Similarly we have

F (
_
x; p) � F (x�; p)

F (
_
x; p; �)� 1

4
mp� � F (

_
x; p) � F (x�; p)

that is

(9) F (
_
x; p; �)� F (x�; p) � 1

4
mp�.

The above two inequalities (8) and (9) indicate that the theorem is true.

Theorem 2.8 and Theorem 2.10 say that the optimal solution of smooth penalty
problem (5) is also the optimal solution to the nonsmooth penalty problem (3)
in a small error.



Theorem 2.11 Let x� be an optimal solution to (3) and
_
x 2 Rn an optimal

solution to (5). If x� be a feasible for the problem (1) and
_
x be an �-feasible

for the problem (1), then

1

2
mp� � f(

_
x)� f(x�) � 0.

Proof. Let
_
x be an �-feasible for the problem (1). Using the De�nition 2.9, we

have
mP
i=1

p�(gi(
_
x)) � 1

4m�. Also from the optimality conditions of x�, we obtain

mP
i=1

p(gi(x
�)) = 0.

From the Theorem 2.10 and the de�nitions of F (x; p), F (x; p; �), we get

1

4
mp� �

 
f(
_
x)� p

mX
i=1

p�(gi(
_
x))

!
�
 
f(x�)� p

mX
i=1

p(gi(x
�))

!
� 0,

which gives
1

2
mp� � f(

_
x)� f(x�) � 0.

and we complete the proof.

As a consequence of the Theorem 2.11, we proved the relationship between the
optimal solution to the problem (1) and (5).

3. Illustrative Examples

Example 3.1 An example is taken from Matlab to show the applicability of
our approach,

minimize f(x) = exp (x1)
�
4x21 + 2x

2
2 + 4x1x2 + 2x2 + 1

�
subject to g1(x) = x1 + x2 � x1x2 � 1:5 > 0

g2(x) = x1x2 + 10 > 0

where its optimal solution locates at the point (�9:5474; 1:0474). Its smooth
penalty function is written as

F (x; p; �) = exp (x1)
�
4x21 + 2x

2
2 + 4x1x2 + 2x2 + 1

�
�p

8><>:
g1(x) +

1
2� (g1(x))

2 � 1
4�; if t 6 �

1
8
(g1(x))

3

�2
; if � 6 t 6 0

0; if t > 0

�p

8><>:
g2(x) +

1
2� (g2(x))

2 � 1
4�; if t 6 �

1
8
(g2(x))

3

�2
; if � 6 t 6 0

0; if t > 0:



The corresponding di¤erential equations system from (6) are

dx1
dt

= � exp(x1)(4x21 + 2x22 + 4x1x2 + 2x2 + 1)� exp(x1)(8x1 + 4x2)

+prx1p�(g1) + prx1p�(g2)
dx2
dt

= � exp(x1)(4x2 + 4x1 + 2) + prx2p�(g1) + prx2p�(g2).

The Euler method is used to solve the di¤erential equations system. If we take
the initial values for x1(0) = 0, x2(0) = 0, p = 10 and � = �0:0001 with step
size dt = 0:0001, simulation result shows the equilibrium point of the dynamical
system, which is very close to the optimal point of the nonlinear programming
problem, at the point (�9:5240; 1:0479).

Figure 1. The trajectories of example problem for the
given initial values

Example 3.2 Consider the following NLP problem with inequality constrained
[13],

minimize f(x) = 100
�
x2 � x21

�2
+ (1� x1)2

subject to g1(x) = x
2
1 + x

2
2 � 0:25 > 0.



The optimal solution is x� = (1; 1)T . Its smooth penalty function is written as

F (x; p; �) = 100
�
x2 � x21

�2
+ (1� x1)2

�p

8><>:
g1(x) +

1
2� (g1(x))

2 � 1
4�; if t 6 �

1
8
(g1(x))

3

�2
; if � 6 t 6 0

0; if t > 0:

The corresponding di¤erential equations system are

dx1
dt

= 400x1(x2 � x21) + 2(1� x1) + prx1p�(g1)

dx2
dt

= �200(x2 � x21) + prx2p�(g1).

The Euler method is used to solve the di¤erential equations system. Taking
step size dt = 0:001, when the initial point is taken as x1(0) = �2, x2(0) = 2,
p = 1 with � = �0:0001, the trajectories of the dynamical system converge to
theoretical optimal solution x� = (1; 1)T .

Figure 2. The trajectories of example problem for the
given initial values

4. Conclusions



We have proposed a dynamic system approach for solving NLP problems. Based
on the smooth penalty function (4), corresponding the dynamic system model
(6) has been constructed for this purpose. Through theoretical analysis and
example computations, it has been shown that the equilibrium point of the
dynamic system coincides with the optimal solution of the NLP problem depends
on the chosen parameter and . Moreover, the equilibrium point of the system
was proved to be stable in the sense of Lyapunov method. Furthermore, we
showed that optimal values for smooth and nonsmooth penalty method are
very close.
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