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In this paper, we have aimed the numerical inverse Laplace homotopy technique 
for solving some interesting 1-D time-fractional heat equations. This method is 
based on the Laplace homotopy perturbation method, which is combined form of 
the Laplace transform and the homotopy perturbation method. Firstly, we have 
applied to the fractional 1-D PDE by using He’s polynomials. Then we have used 
Laplace transform method and discussed how to solve these PDE by using Laplace 
homotopy perturbation method. We have declared that the proposed model is very 
efficient and powerful technique in finding approximate solutions to the fractional 
PDE.
Key words: fractional heat equation, Laplace transform, Caputo derivative, 

homotopy perturbation method

Introduction

Fractional differential equations have an important role in modelling and describing 
certain problems such as diffusion processes, chemistry, engineering, economic, material sci-
ences, and other areas of application. Fractional calculations and approximate analytical solu-
tion methods are used extensively in the solution of real life problems, especially in mathemati-
cal and physical systems of problems. Among them, the fractional models were used to analyze 
the model of regularized long-wave equation arising in ion acoustic plasma waves [1], to solve 
KdV Burgers problem [2] to evaluate the pricing the financial instruments [3-5], to obtain the 
analytical solutions of non-linear coupled Boussinesq-Burger’s equations arise in propagation 
of shallow water waves performance [6], to interpret holomorphic solutions for non-linear sin-
gular fractional differential equations [7], to calculate the numerical solutions of space-time 
fractional diffusion equation [8], etc. In addition, these fractional models were used to demon-
strate the applications of approximate-analytical and numerical solution methods. Fractional 
techniques are also used to model the solution of optimal control problem [9], constrained 
optimization problem [10], portfolio optimization problem [11], diffusion-wave problem [12], 
a transient heat diffusion equation with relaxation term expressed through the Caputo-Fabrizio 
time fractional derivative [13], heat problem on radial symmetric plate [14], etc.

On the other hand, several researchers [2, 15-18] have applied the homotopy pertur-
bation method (HPM), homotopy analysis method (HAM), and Laplace transform method to 
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solve different kinds of fractional ODE, fractional PDE, integral equations (IE), and integro-dif-
ferential equations (IDE). In addition Javidi and Ahmad [19] proposed a numerical method 
which is based on HPM and Laplace transform for fractional PDE. In [20], Laplace homotopy 
perturbation method (LHPM) which is a combination of the HPM and Laplace transform (LT) 
has been used for solving 1-D PDE. Talbot [21] improved direct numerical inversion of LT.  
The interested researchers are also referred to different applications of fractional PDE solutions 
[22-28].

In this paper, the method for numerical solution of fractional PDE is investigated 
with the HPM and Stehfest’s numerical algorithm [29] in order to calculate inverse LT. When 
looking at the results, it is obvious that the method is very effective and accurate for solving 
fractional PDE.

Some preliminaries

In this section, we first give some basic definitions of fractional calculus and LT. 
Definition 1. The Riemann-Liouville fractional integral and derivative of order 0α >  

for a function 1
mf C−∈  with m N∈  is defined as, respectively: 
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Definition 2. The LT of D ( )f tα  can be defined:
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Description of the proposed method

Consider the following linear 1-D fractional PDE:
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with the initial conditions:
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k
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and the boundary conditions:

	 ( ) ( ) ( ) ( )0 10, , 1, , 0u t g t u t g t t= = ≥  	 (6)

where 0 1, 0,1,..., 1, , , , ,kf k m v g g A B= − , and C  are known functions and 0T >  is a real num-
ber and 1 .m mα− < ≤  We define the method of solution for solving problem of eqs. (4)-(6).

Getting the LT of problem (4)-(6) and using eq. (3), we obtain:
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where ( , )x sΨ  and ( , )v x s  represent the LT of ( , )u x t  and ( , )v x t , respectively, and we obtain the 
LT of boundary conditions 0 ( )g t  and 1( )g t :

	 [ ] [ ]0 1(0, ) ( ) , (1, ) ( )s L g t s L g tΨ = Ψ =  	

Considering the eq. (7), we reach:
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Applying the HPM [30-33] to eq. (8), we build a homotopy:
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Then the solution of eq. (9) can be represented:
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where ( ), , 0,1,2,...,j x s jΨ =  are the unknown functions. Substituting the eq. (10) in eq. (9), 
we have:
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By comparing the coefficients of powers of ,p  we obtain the homotopies:
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When the 1,p →  we see that the eq. (12) gives the approximate solution for the prob-
lem of eqs. (4)-(6) and the solution is given:
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If we take the inverse LT of eq. (13), we obtain:
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As the last work, applying Stehfest’s algorithm [29] to ( , ),nH x s  the solution ( , )u x t  is 
found:
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Here 
 

k  represents the integer part of the real number .k  

Numerical examples

In order to illustrate the effectiveness and appropriateness of the method proposed in 
this paper, several numerical examples are carried out in this section. 

Example 1. Let us consider the following 1-D inhomogeneous fractional Burgers 
equation [34]:
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with the initial condition:

	 2( ,0)u x x=  	 (16)

We know that the exact solution of this problem for 1α =  is given [34]:

	 2 2( , )u x t x t= +  	 (17)

By using the proposed method and the eq. (12), we find that:
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and so on. By using the eq. (13), we see that:
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Taking the inverse LT of eq. (19), we observe that the approximate solution of eqs. 
(15) and (16) obtained by using LHPM is the same with the analytical solution in eq. (17):
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Example 2. We suppose the following 1-D linear inhomogeneous fractional heat equa-
tion [34]:

	 ( )
2

3 3 3
2 6 6 , 0, , 1 2u u u x t x x t t x R

t x

α

α α∂ ∂
− + = + − > ∈ < ≤

∂ ∂
 	 (21)

subject to the initial conditions:
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By using the method presented in eq. (12), we obtain:
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As previous, using the eq. (13), we observe:
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Taking the inverse Laplace transform of eq. (24) and taking the limit ,n →∞  the ap-
proximate solution for problem of eqs. (21) and (22) is given:
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In eq. (25), the solution of classical Klein-Gordon equation when 2α =  is given:
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Canceling the noise terms in eq. (26) the exact solution of eq. (21), for the special case 
2,α =  as follows:

	 ( ) 3 3,u x t x t= 	 (27)

The results obtained as approximation solutions for the solution of eq. (21) with the 
initial conditions of eq. (22) for various values of α  and t  are presented in figs. 1 and 2. In figs. 
1 and 2, the space variable, x is regarded as 0.5 and 1.0, respectively. According to these figures, 
the obtained approximation solution results coincide with the exact solution results. 

t

u(
0.

5,
 t)

0.0                    0.2                    0.4                    0.6                     0.8                    1.0

1.6

1.4

1.2

1.0

0.8

0.6

0,4

0,2

0.0

α = 1.3, Exact
α = 1.3, Approx
α = 1.6, Exact
α = 1.6, Approx
α = 1.9, Exact
α = 1.9, Approx

Figure 1. Numerical and exact solutions for  
Example 2 at x = 0.5

Figure 2. Numerical and exact solutions for  
Example 2 at x = 1.0
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Example 3. Consider the following 1-D inhomogeneous fractional heat equation [35]:
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	 ( ,0) 0u x =  	 (29)
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and the boundary condition:

	 (0, ) (2, ) 0u t u t= =  	 (30)

We know that the exact solution of eqs. (28)-(30) is given:
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that equals to 2( , ) (2 )u x t x x t= −  when 1.α =  Now, if we use the method in eq. (12), we have the 
homotopies problem of the eqs. (28)-(30):

	

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

0
0 3 3

2 2 2
1

1 02 3 2 3

2 2 2
2

2 12 2 3 3 3

2 2 2
3

3 22 3 3 4

2 2 2 2 4
: ,

1 2 4 4 2 4: , 1 ,

1 4 2 4 4 2: , 1 ,

1 2 4 4 2 4: , 1 ,

x x x x
p x s

s s
x x x xp x s x s

s x s s

x x x xp x s x s
s x s s

x x x xp x s x s
s x s s

α

α α α

α α α

α α α

+

+ +

+ +

+ +

− − +
Ψ = +

 ∂ − + −
Ψ = − − + Ψ = + ∂ 

 ∂ − + −
Ψ = − − + Ψ = + ∂ 

 ∂ − + −
Ψ = − − + Ψ = + ∂ 

( ) ( )
( )

( )

3

2 2

2 3 1 3
1

1 2 2 2

3 1 3

2 4 4 2 4 , 2 1
1: , 1 ,

4 2 4 2 4 , 2

n n
n

n n

n n

x x x x n k
s sp x s x s

s x x x x x n k
s s

α α

α

α α

+ + +
+

+

+ + +

 − + −
+ = + ∂ Ψ = − − + Ψ =  ∂ − − +   + =



 	(32)

By means of eq. (13), we obtain:
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Taking the inverse LT of eq. (33), the approximate solution of problem in eqs. (28)-(30) 
is given:
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that, on taking the limit ,n →∞  holds:
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The results obtained for the solution of eq. (28) for various values of α  are presented 
in tab. 1 and fig. 3. According to tab. 1, it can be say that the numerical results found are very 
close to the exact solution results. Also it is obvious that fig. 3 says that the numerical results 
are very similar to the exact solution one. 
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Concluding remarks

The fundamental aim of this paper is to construct an approximation solution of linear 
PDE of fractional order. The goal has been achieved by applying the HPM with LT to several 
fractional PDE. The present work has verified the validity and effectiveness of the LHPM using 
the three different examples. At the first example, LHPM has a very important result because 
it has given the exact solution of the problem. At the second and third examples, the proposed 
method has given very close results to the exact solutions.
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