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Abstract Let λ ≥ 2 and let H(λ) be the Hecke group associated to λ. Also let
H(λ)\U be the Riemann surface associated to the Hecke group H(λ). In this article,
we study the even subgroup He(λ) and the power subgroups Hm(λ) of the Hecke
groups H(λ). We also study some genus 0 normal subgroups of finite index of H(λ).
Finally, we discuss free normal subgroups of H(λ).
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1 Introduction

The Hecke groups H(λ) are the set of linear fractional transformations generated by

T(z) = −1

z
and S(z)= − 1

z + λ
,
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which take the upper half of the complex plane onto itself. Also we can represent the
generators of the Hecke groups H(λ) as

T =
(

0 −1
1 0

)
and S =

(
0 −1
1 λ

)
,

(throughout this paper, we identify each matrix A with −A, so that they each
represent the same element of H(λ).)

In [7], Hecke proved that H(λ) is discrete only when λ = λq = 2 cos π
q , q ≥ 3,

q ∈ N, or λ ≥ 2. These groups have come to be known as the Hecke groups and we
will denote them by H(λq), q ≥ 3 or by H(λ), λ ≥ 2. The first few Hecke groups are

H(λ3) = PSL(2, Z) = � (the modular group), H(λ4) = H(
√

2), H(λ5) = H
(

1+√
5

2

)
,

and H(λ6) = H(
√

3) for q = 3, 4, 5 and 6, respectively.

The Hecke groups H(λq) and their normal subgroups have been extensively
studied from many points of view in the literature, (see, [1, 4, 5] and [16]). The
Hecke group H(λ3), the modular group PSL(2, Z), and its normal subgroups have
especially been of great interest in many fields of Mathematics, for example number
theory, automorphic function theory and group theory, (see, [9, 10] and [11]).

Here we are interested in the case λ ≥ 2. In this case, the element S is parabolic
when λ = 2, or hyperbolic (boundary) when λ > 2. When λ > 2, H(λ) is of the
second kind; that is, it is a group of infinite volume (see [12]). It is known that when
λ ≥ 2, H(λ) is a free product of a cyclic group of order 2 and infinity, [13], so all such
H(λ) have the same algebraic structure, i.e.

H(λ) =< T, S | T2 = I >∼= C2 ∗ Z. (1.1)

Also, the signature of H(λ)\U is (0; 2,∞; 1), i.e., a sphere with one puncture,
one elliptic fixed point of order 2, and one hole when λ > 2, or (0; 2,∞,∞) ∼=
(0; 2,∞(2)), a sphere with two punctures and one elliptic fixed point of order 2
when λ = 2. Therefore all Hecke groups H(λ), λ ≥ 2, can be considered as a triangle
group.

As can be understood from its title, this paper is concerned with normal subgroups
of Hecke groups H(λ), λ ≥ 2. The Reidemeister–Schreier method, the permutation
method and the Riemann-Hurwitz formula are used to obtain the abstract group
structure, generators and signatures of these normal subgroups. We begin with the
even subgroup He(λ), since He(λ) is very important amongst the normal subgroups
of H(λ) and it contains infinitely many normal subgroups of H(λ). Also we study the
power subgroups Hm(λ). Then we find some genus 0 normal subgroups of the finite
index of H(λ) and finally, we discuss the free normal subgroups of H(λ).

2 The Even Subgroup of H(λ)

We now study the structure of an important normal subgroup of H(λ) namely
the even subgroup. First we look at the elements of H(λ). We need the following
definition.
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Definition 2.1 Let a, b , c and d be all polynomials of λ2 with rational integer
coefficients. Then

(i) the elements of type
(

a bλ

cλ d

)
where ad − bcλ2 = 1, are called even elements,

(ii) the elements of type
(

aλ b
c dλ

)
where adλ2 − bc = 1, are called odd elements.

Note that if we consider the multiplication of these elements, the situation is
similar to the multiplication of negative and positive numbers. Here, we have

odd.odd = even.even = even,

even.odd = odd.even = odd.

Theorem 2.1 The Hecke groups H(λ) consist exactly of odd and even elements.

Proof Since the generators of H(λ) have form T =
(

0.λ −1
1 0.λ

)
and S =

(
0.λ −1
1 1.λ

)
,

they are odd elements. If we take an element V of H(λ), we can write this element
as a cyclically reduced word of the form V = T Sε1 T Sε2 ...T Sεn where 1 ≤ εi. Thus if
the sum of the T ′s and S′s in the element V is even, then V is even, otherwise V
is odd. 
�

Definition 2.2 The even elements form a subgroup of H(λ) of index 2 called the even
subgroup, denoted by He(λ):

He(λ) =
{

M =
(

a bλ

cλ d

)
: M ∈ H(λ)

}
.

The set of odd elements

Ho(λ) =
{

N =
(

aλ b
c dλ

)
: N ∈ H(λ)

}
,

forms the other coset of He(λ) in H(λ).

Theorem 2.2 The even subgroup He(λ) of H(λ) is a normal subgroup of index two of
H(λ). Also

H(λ) = He(λ) ∪ T.He(λ),

He(λ) ∼= 〈ST〉 ∗ 〈T S〉, (2.1)

and therefore He(λ) is isomorphic to the free product of two infinite cyclic groups.
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Proof First, we consider the case λ > 2. Having index two He(λ) is a normal subgroup
of H(λ). Let us now choose {I, T} as a Schreier transversal for the even subgroup.
According to the Reidemeister–Schreier method, we can form all possible products:

I.T.(T)−1 = I,

T.T.(I)−1 = I,

I.S.(T)−1 = ST,

T.S.(I)−1 = T S.

The generators of He(λ) are ST and T S. It is easily seen that both generators are
parabolic elements of infinite order. We have

He(λ) ∼= 〈ST〉 ∗ 〈T S〉 ∼= Z ∗ Z.

Finally as T /∈ He(λ), (2.1) follows.
Now we consider the homomorphism

H(λ) → H(λ)/He(λ) ∼= C2.

Here T is mapped to an element of order two and S is mapped to an element of
order two. Hence T S is mapped to the identity. Then the permutation method and
the Riemann-Hurwitz formula together give the signature of He(λ)\U as (0; ∞(2); 1),

i.e., a sphere with two punctures, and one hole.
If we consider the case λ = 2 then similarly to the case λ > 2, we obtain the

signature of He(2)\U as (0;∞(3)), i.e., a sphere with three punctures. 
�

3 Power Subgroups of H(λ)

Let m be a positive integer. Let us define Hm(λ) to be the subgroup generated by the
mth powers of all elements of H(λ). The subgroup Hm(λ) is called the mth − power
subgroup of H(λ). As fully invariant subgroups, they are normal in H(λq).

From the definition one can easily deduce that

Hm(λ) > Hmk(λ)

and that

(Hm(λ))k > Hmk(λ).

The power subgroups of the Hecke groups H(
√

n), n square-free integer, was
studied in [15]. Here we show that this nicely generalizes to Hecke groups H(λ) with
λ ≥ 2.

We now discuss the group theoretical structure of these subgroups. Let us consider
the presentation of the Hecke group H(λ) given in (1.1):

H(λ) =< T, S | T2 = I > .

We find a presentation for the quotient H(λ)/Hm(λ) by adding the relation Xm = I
to the presentation of H(λ). The order of H(λ)/Hm(λ) gives us the index. We have

H(λ)/Hm(λ) ∼=< T, S | T2 = Tm = Sm = (T S)m = ... = I > . (3.1)



Normal subgroups of Hecke groups H(λ) 223

Thus we use the Reidemeister-Schreier process to find the presentation of the
power subgroups Hm(λ). First we have

Theorem 3.1 The normal subgroup H2(λ) is the free product of three infinite cyclic
groups. Also

H(λ)/H2(λ) = C2 × C2,

H2(λ) =< S2 > ∗ < T S2T > ∗ < T ST S−1 >,

and

H(λ) = H2(λ) ∪ T H2(λ) ∪ SH2(λ) ∪ T SH2(λ).

The elements of H2(λ) can be characterized by the requirement that are the sums of
the exponents of T and S are both even.

Proof If λ > 2, then by (3.1), we get

H(λ)/H2(λ) ∼=< T, S | T2 = S∞ = (T S)∞ = T2 = S2 = (T S)2 = ... = I > .

Since S∞ = S2 = I and (T S)∞ = (T S)2 = I, we obtain

H(λ)/H2(λ) ∼=< T, S | T2 = S2 = (T S)2 = I >

and therefore we have

H(λ)/H2(λ) ∼= C2 × C2
∼= D2,

∣∣H(λ) : H2(λ)
∣∣ = 4.

Now we choose {I, T, S, T S} as a Schreier transversal. Hence, all possible products
are

I.T.(T)−1 = I, I.S.(S)−1 = I,

T.T.(I)−1 = I, T.S.(T S)−1 = I,

S.T.(T S)−1 = ST S−1T, S.S.(I)−1 = S2,

T S.T.(S)−1 = T ST S−1, T S.S.(T)−1 = T S2T.

Since (ST S−1T)−1 = T ST S−1, the generators of H2(λ) are S2, T S2T, T ST S−1. Thus
H2(λ) has a presentation

H2(λ) =< S2 > ∗ < T S2T > ∗ < T ST S−1 >

and we get

H(λ) = H2(λ) ∪ T H2(λ) ∪ SH2(λ) ∪ T SH2(λ).

Now we consider the homomorphism

H(λ) → H(λ)/H2(λ) ∼= D2.
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Here T is mapped to an element of order two, S is mapped to an element of
order two, and T S is mapped to an element of order two. Then the permutation
method and the Riemann-Hurwitz formula together give the signature of H2(λ)\U
as (0;∞(2); 2), i.e., a sphere with two punctures and two holes.

If λ = 2, then the signature of H2(2)\U is (0; ∞(4)), i.e., a sphere with four
punctures. 
�

Now we can write the following result from the Theorem 2.2 and the Theorem 3.1.

Corollary 3.2 The group H2(λ) is a subgroup of index two of the even subgroup
He(λ).

Theorem 3.3 Let m be a positive odd integer. The normal subgroup Hm(λ) is isomor-
phic to the free product of m cyclic groups of order two and an infinite cyclic group.
Also

H(λ)/Hm(λ) ∼= Cm,

Hm(λ) =< Sm > ∗ < T > ∗ < ST S−1 > ∗ < S2T S−2 >

∗ . . . ∗ < Sm−1T S−(m−1) >,

and

H(λ) = Hm(λ) ∪ SHm(λ) ∪ S2 Hm(λ) ∪ . . . ∪ Sm−1 Hm(λ).

Proof If λ > 2, then by (3.1), we have

H(λ)/Hm(λ) ∼= < T, S | T2 = S∞ = (T S)∞ = I,

Tm = Sm = (T S)m = ... = I > .

Therefore we find Sm = T = I from the relations

T2 = Tm = I, S∞ = Sm = I,

and as (m, 2) = 1. Thus we obtain

H(λ)/Hm(λ) ∼=< S | Sm = I >

and therefore we get

H(λ)/Hm(λ) ∼= Cm,

∣∣H(λ) : Hm(λ)
∣∣ = m.
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Now we choose {I, S, S2, . . . Sm−1} as a Schreier transversal. Hence, all possible
products are

I.T.(T)−1 = T, I.S.(S)−1 = I,
S.T.(S)−1 = ST S−1, S.S.(S2)−1 = I,
S2.T.(S2)−1 = S2T S−2, S2.S.(S3)−1 = I,
...

...

Sm−1.T.(Sm−1)−1 = Sm−1T S−(m−1), Sm−1.S.(I)−1 = Sm.

The generators of Hm(λ) are Sm, T, ST S−1, S2T S−2, . . . , Sm−1T S−(m−1). Thus Hm(λ)

has a presentation

Hm(λ) =< Sm > ∗ < T > ∗ < ST S−1 > ∗ < S2T S−2 >

∗ . . . ∗ < Sm−1T S−(m−1) >,

and we get

H(λ) = Hm(λ) ∪ SHm(λ) ∪ S2 Hm(λ) ∪ . . . ∪ Sm−1 Hm(λ).

Now we consider the homomorphism

H(λ) → H(λ)/Hm(λ) ∼= Cm.

Here T is mapped to the identity and S is mapped to an element of order m. Hence
T S is mapped to an element of order m. Using the permutation method and the
Riemann–Hurwitz formula we have the signature of Hm(λ)\U as (0; 2(m), ∞; 1), i.e.,
a sphere with one puncture, m elliptic fixed points of order 2, and one hole.

If λ = 2, we find the signature of Hm(2)\U as (0; 2(m),∞(2)), i.e., a sphere with two
punctures, m elliptic fixed points of order 2. 
�

Finally, if m > 2 is even, then there are the relations T2 = Sm = (T S)m = I and
the other relations in the quotient group H(λ)/Hm(λ). Then the order of factor group
is unknown. In this case the above techniques do not say much about Hm(λ). But we
can write m = 2k, k ≥ 2 integer. Then because H2(λ) is a free group and H2(λ) ⊃
(H2(λ))k ⊃ H2k(λ), we have by Schreier’s Theorem the following :

Theorem 3.4 Let m > 2 be a positive even integer. The groups Hm(λ) are free
groups.

4 Normal Subgroups of H(λ)

Normal subgroups of Hecke groups H(λq) has been studied by Cangül, Bizim and
Singerman and classification theorems are given in [1 − 4]. Also normal subgroups
of the Hecke group H(

√
5) have been investigated by Özgür and Cangül in [14]

(note that λ = √
5 > 2). Our aim in this section is to generalise these results to Hecke

groups H(λ) for all λ ≥ 2 and find some normal subgroups of them. One way of doing
this is to use the regular map theory.

The study of maps is closely related to the study of subgroups of certain triangle
groups. In [8], Jones and Singerman showed that there is a natural correspondence
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between maps and Schreier coset graphs for the subgroups of the triangle groups
(2, m, n). Regularity is an important property of maps. Jones and Singerman showed
the existence of a 1 : 1 correspondence between regular maps and normal subgroups
of certain triangle groups including Hecke groups H(λq) (see [8]). We can generalise
this correspondence to all Hecke groups H(λ). By means of this correspondence we
can find normal subgroups of H(λ) and prove many important results related to them
if we know the corresponding regular maps.

We use this correspondence between regular maps and normal subgroups to
obtain normal subgroups of Hecke groups from regular maps in the following way:
Firstly, there is a homomorphism θ from H(λ) ∼= (2,∞; 1) (or H(λ) ∼= (2,∞,∞)) to
the triangle group (2, m, n). Let now M be a regular map of type {m, n}. By Jones
and Singerman’s result, associated to M there is a normal subgroup N of the triangle
group (2, m, n). If we consider the inverse image θ−1(N) of N, it is a normal subgroup
of H(λ). We shall say that N is a normal subgroup of H(λ) corresponding to the
regular map M of type {m, n}. The number n corresponds to the level of the normal
subgroup θ−1(N).

Now we discuss some genus 0 normal subgroups of finite index of H(λ). Let N be
a normal subgroup of genus 0 in H(λ). Then H(λ)/N acts on the Riemann surface
Û/N where Û is the upper half plane (see [6]). This gives a regular map on the
sphere, so that H(λ)/N is isomorphic to a finite subgroup of SO(3), and therefore,
is isomorphic to one of the finite triangle groups. These are known to be isomorphic
to A4, S4, A5, Cn, and Dn, for n ∈ N. Now considering each of these groups as a
quotient group of H(λ), whenever possible, we can find all genus 0 normal subgroups
of Hecke groups.

First we consider the case λ > 2 :
Let us begin with the cyclic group Cn

∼= (1, n, n) of order n. By mapping T to
the identity and S to the generator α of the cyclic group of order n, we obtain a
homomorphism of H(λ) to Cn. For each such n, we get a normal subgroup N of
genus 0. By the permutation method, N\U has signature (0; 2(n),∞; 1), i.e., a sphere
with one puncture, n elliptic fixed points of order 2, and one hole. We denote this
class of normal subgroups of H(λ) by Yn(λ). They are isomorphic to the free product
Z with n cyclic groups of order two. These subgroups have the property that each
Yn(λ) contains infinitely many normal subgroups Yn(λ) of genus 0, since we have
Yn(λ) � Ynk(λ), k ∈ N. The corresponding regular maps are called star maps. They
consist of a vertex surrounded by a number of edges.

There is another homomorphism of H(λ) to a cyclic group C2 of order two
with signature (2, 1, 2) (that is, C2 can be thought of as finite triangle group with
a presentation < x, y | x2 = y1 = (xy)2 = I >). But as this quotient is a member of
the class Dn

∼= (2, n, 2) of dihedral groups of order 2n, it will be considered in the
following paragraph:

Let us now map H(λ) to a dihedral group Dn
∼= (2, n, 2) ∼=< x, y | x2 = yn =

(xy)2 = I > of order 2n, by taking T to x, and S to y. This is a homomorphism
and similarly we obtain a normal subgroup denoted by Sn(λ)\U with signature
(0;∞(2); n), i.e., a sphere with two punctures and n holes. It is isomorphic to the
free-product of (n + 1) infinite cyclic groups. Corresponding regular maps are regular
polygons on the sphere.

Now we map H(λ) to A4
∼= (2, 3, 3) ∼=< x, y | x2 = y3 = (xy)3 = I >. By mapping

T to x and S to y we obtain a homomorphism of H(λ) onto A4 and this gives a
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normal subgroup denoted by T1(λ)\U with signature (0;∞(4); 4), i.e., a sphere with
four punctures and four holes. Corresponding regular map is a tetrahedron.

If we map H(λ) to S4
∼= (2, 3, 4) by taking T to the generator of order 2 and S

to the generator of order 3 of S4, then we get a normal subgroup T2(λ)\U with
signature (0;∞(8); 6), i.e., a sphere with 8 punctures and 6 holes. Corresponding
regular map is an octahedron. Also we can map H(λ) to S4

∼= (2, 4, 3) by taking T
to the generator of order 2 and S to the generator of order 4 of S4, then we have a
normal subgroup T3(λ)\U with signature (0;∞(6); 8), i.e., a sphere with 6 punctures,
and 8 holes. Corresponding regular map is a cube.

If we map H(λ) to A5
∼= (2, 3, 5) such that T is taken to the generator of order 2

and S is taken to the generator of order 3, we obtain a normal subgroup T4(λ)\U with
signature (0; ∞(20); 12)−a sphere with 20 punctures and 12 holes. The corresponding
regular map is an icosahedron. Also mapping onto A5

∼= (2, 5, 3), we obtain a normal
subgroup T5(λ)\U with signature (0;∞(12); 20), i.e., a sphere with 12 punctures and
20 holes. Corresponding regular map is a dodecahedron.

Furthermore, it is possible to map H(λ) to a dihedral group Dn
∼= (2, 2, n) ∼=<

x, y | x2 = y2 = (xy)n = I > for each n ∈ N, by mapping T to x and S to y. Here
we obtain a normal subgroup denoted by Wn(λ)\U with signature (0;∞(n); 2), i.e.,
a sphere with n punctures and two holes. Note that Dn

∼= (2, 2, n) contains C2
∼=

(2, 2, 1).

Let us now consider the case λ = 2 :
Similarly in the case λ > 2, we find the signatures of Yn(2), Sn(2), T1(2),

T2(2), T3(2), T4(2), T5(2), Wn(2) as (0; 2(n),∞(2)), (0; ∞(n+2)), (0;∞(8)), (0;∞(14)),

(0;∞(14)), (0;∞(32)), (0;∞(32)), (0;∞(n+2)), respectively. Therefore, we get Sn(2) ∼=
Wn(2), T2(2) ∼= T3(2), T4(2) ∼= T5(2). Also, T1(2), T2(2), T4(2) are Sn(2) groups
obtained for n = 6, 12, 30, respectively.

Hence we have the following result:

Theorem 4.1

i) If λ > 2 then all normal subgroups of H(λ) with genus 0 are isomorphic to one of
the T1(λ), T2(λ), T3(λ), T4(λ), T5(λ), Yn(λ), Sn(λ), Wn(λ), for n ∈ N.

ii) If λ = 2 then all normal subgroups of H(2) with genus 0 are isomorphic to one of
the Yn(2), Sn(2), for n ∈ N.

As for every n ∈ N , we can always find a normal subgroup of genus 0 we have the
following result.

Corollary 4.1 For λ ≥ 2, all Hecke groups H(λ) have infinitely many normal
subgroups of genus 0.

Remark 4.1 Note that for all λ ≥ 2, W1(λ) ∼= He(λ), S2(λ) ∼= H2(λ) ∼= W2(λ) and
Yn(λ) ∼= Hn(λ) for odd integer n ≥ 3.

5 Free Normal Subgroups of H(λ)

As H(λ) is the free product of a cyclic group of order 2 and a cyclic group of infinite
order, it has, by the Kurosh subgroup theorem, or by considering signatures, two
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kinds of normal subgroups : Free ones and free products of some infinite cyclic groups
with some cyclic groups of order two. Therefore the study of free normal subgroups
and their group theoretical structures will be important to us. These have been done
for Hecke group H(

√
5) by Özgür and Cangül in [14], for modular group H(λ3) by

Newman in [11] and for Hecke groups H(λq), q odd, by Cangül in [1]. Their results
can be generalized to Hecke groups H(λ), λ ≥ 2.

Before giving the main theorem we need the following lemmas.

Lemma 5.1 Let N be a non-trivial normal subgroup of finite index in H(λ). Then N
is free if and only if it contains no elements of finite order.

Proof The Kurosh subgroup theorem states that a subgroup N �= {I} of a free
product G is itself a free product,

N = F ∗
∏

∗ Gi

where F is either free or {I} and each Gi is conjugate to {T} . Thus if N contains no
elements of finite order, then the free product

∏
∗ Gi is vacuous, and so N = F. Since

N is non-trivial, it follows that N is free. Conversely, if N is free, then by definition,
it contains no elements of finite order. 
�

Lemma 5.2 The only normal subgroups of finite index in H(λ) containing elements of
finite order are

H(λ) and Yn(λ), n ∈ N.

Proof Firstly, we consider the case λ > 2. Let N be a normal subgroup of finite index
in H(λ) containing an element of finite order. Then N contains an element of order 2.

Since every element of order two in H(λ) is conjugate to T, it follows that N contains
T, since N is normal. There are then two possibilities:

(i) N contains S. Then N = H(λ).
(ii) N contains T but not S. Thus if we map H(λ) to H(λ)/N then S can be mapped

to a product of n−cycles while T goes to the identity where n | μ and n ∈ N, μ is
the index of N. Therefore T S goes to a product of n−cycles. By the permutation
method, we obtain the signature of N\U as (g; 2(μ), ∞(μ/n); μ/n). By the Riemann-
Hurwitz formula we find g = 1 − μ/n. If μ = n then we have g = 0. In this case the
factor group H(λ)/N is isomorphic to Cn

∼= (1, n, n) and the signature of N\U is
(0; 2(n), ∞; 1); i.e., a sphere with one puncture, n elliptic fixed points of order 2, and
one hole. Since g ≥ 0, any other case is not possible.

Similarly, if λ = 2 then we find that the signature of N\U is (0; 2(n), ∞(2)); i.e., a
sphere with two punctures and n elliptic fixed points of order 2. 
�

Remark 5.1 Note that Lemma 5.2 implies that H(λ) has infinitely many normal
subgroups containing elements of finite order.

Now we have the following result:

Corollary 5.3 Let N be a normal subgroup of positive genus in H(λ). Then N is
torsion-free.
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The corollary does not have a converse as there are some free normal subgroups
of H(λ) with genus 0, as we have seen in Section 4, (for example the subgroups Wn(λ)

and Sn(λ)).

Now we can characterize the freeness of a normal subgroup of H(λ) by comparing
it with the following normal subgroups :

Theorem 5.4 Let N be a non-trivial normal subgroup of H(λ) different from Yn(λ),
n ∈ N. Then N is free.

Proof It can be easily seen as an immediate consequence of the lemmas. 
�

Theorem 5.5

i) Let λ > 2 and let N be a free normal subgroup of H(λ) of finite index μ. Then N
has the signature (

1 + μ

4
− t

2
− u

2
; ∞(t); u

)
.

ii) Let λ = 2 and let N be a free normal subgroup of H(2) of finite index μ. Then N
has the signature (

1 + μ

4
− t

2
; ∞(t)

)
.

Proof

i) As N is free, it has the signature (g;∞(t); u). By the Riemann-Hurwitz formula

2g − 2 + t + u = μ.

(
−2 + 1 − 1

2
+ 1 + 1

)

and therefore

g = 1 + μ

4
− t

2
− u

2
.

ii) Similarly to the case λ > 2, we obtain the signature of N as
(
1 + μ

4 − t
2 ; ∞(t)

)
.


�

Notice that in Theorem 5.5 (i) and (ii), since g ≥ 0, the possible values of u and t
are 2(t + u) ≤ 4 + μ and 2t ≤ 4 + μ, respectively.
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