On the Characterizations of D-Biharmonic Legendre Curves in Sasakian Space Forms Author(s): Şaban Güvenç and Cihan Özgür Source: *Filomat*, Vol. 31, No. 3 (2017), pp. 639-648 Published by: University of Nis, Faculty of Sciences and Mathematics Stable URL: https://www.jstor.org/stable/10.2307/24902165

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms



University of Nis, Faculty of Sciences and Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Filomat

Filomat 31:3 (2017), 639–648 DOI 10.2298/FIL1703639G



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# On the Characterizations of *f*-Biharmonic Legendre Curves in Sasakian Space Forms

## Şaban Güvenç<sup>a</sup>, Cihan Özgür<sup>a</sup>

<sup>a</sup> Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, 10145, Balikesir, Turkey

**Abstract.** We consider *f*-biharmonic Legendre curves in Sasakian space forms. We find curvature characterizations of these types of curves in four cases.

#### 1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds and  $\phi : (M, g) \rightarrow (N, h)$  a smooth map. The *energy functional* of  $\phi$  is defined by

$$E(\phi) = \frac{1}{2} \int_{M} \left| d\phi \right|^2 v_g,$$

where  $v_g$  is the canonical volume form in *M*. If  $\phi$  is a critical points of the energy functional  $E(\phi)$ , then it is called *harmonic* [5].  $\phi$  is called a *biharmonic map* if it is a critical point of the bienergy functional

$$E_2(\phi) = \frac{1}{2} \int_M \left| \tau(\phi) \right|^2 v_g,$$

where  $\tau(\phi)$  is *the tension field* of  $\phi$  which is defined by  $\tau(\phi) = trace \nabla d\phi$ . The *Euler-Lagrange equation* of the bienergy functional  $E_2(\phi)$  gives the *biharmonic equation* 

$$\tau_2(\phi) = -J^{\phi}(\tau(\phi)) = -\Delta^{\phi}\tau(\phi) - traceR^N(d\phi, \tau(\phi))d\phi = 0,$$

where  $J^{\phi}$  is the Jacobi operator of  $\phi$  and  $\tau_2(\phi)$  is called the *bitension field of*  $\phi$  [8].

Now, if  $\phi : M \to N(c)$  is an isometric immersion from *m*-dimensional Riemannian manifold *M* to *n*-dimensional Riemannian space form N(c) of constant sectional curvature *c*, then

$$\tau(\phi) = mH$$

and

$$\tau_2(\phi) = -m\Delta^{\phi}H + cm^2H.$$

2010 Mathematics Subject Classification. Primary 53C25; Secondary 53C40, 53A04.

Keywords. Legendre curve; Sasakian space form; f-biharmonic curve.

Received: 16 December 2014; Accepted: 23 July 2015

Communicated by Ljubica Velimirović

Email addresses: sguvenc@balikesir.edu.tr (Şaban Güvenç), cozgur@balikesir.edu.tr (Cihan Özgür)

Thus,  $\phi$  is biharmonic if and only if

$$\Delta^{\phi}H = cmH,$$

(see [10]). In a different setting, in [4], B.Y. Chen defined a biharmonic submanifold  $M \subset \mathbb{E}^n$  of the Euclidean space as its mean curvature vector field H satisfies  $\Delta H = 0$ , where  $\Delta$  is the Laplacian. Replacing c = 0 in the above equation, we obtain Chen's definition.

 $\phi$  is called an *f*-biharmonic map if it is a critical point of the *f*-bienergy functional

$$E_{2,f}(\phi) = \frac{1}{2} \int_M f \left| \tau(\phi) \right|^2 v_g.$$

The Euler-Lagrange equation of this functional gives the *f*-biharmonic equation

$$\tau_{2,f}(\phi) = f\tau_2(\phi) + (\Delta f)\tau(\phi) + 2\nabla^{\phi}_{gradf}\tau(\phi) = 0.$$

(see [9]). It is clear that any harmonic map is biharmonic and any biharmonic map is *f*-biharmonic. If the map is non-harmonic biharmonic map, then it is called *proper biharmonic*. Likewise, if the map is non-biharmonic *f*-biharmonic map, then it is called *proper f*-biharmonic [11].

*f*-biharmonic maps were introduced in [9]. Ye-Lin Ou studied *f*-biharmonic curves in real space forms in [11]. D. Fetcu and C. Oniciuc studied biharmonic Legendre curves in Sasakian space forms in [6] and [7]. We studied biharmonic Legendre curves in generalized Sasakian space forms and S-space forms in [13] and [12], respectively. In the present paper, we consider *f*-biharmonic Legendre curves in Sasakian space forms. We obtain curvature equations for this kind of curves.

The paper is organized as follows. In Section 2, we give a brief introduction about Sasakian space forms. In Section 3, we obtain our main results. We also give two examples of proper *f*-biharmonic Legendre curves in  $\mathbb{R}^7(-3)$ .

# 2. Sasakian Space Forms

Let  $(M^{2m+1}, \varphi, \xi, \eta, g)$  be a contact metric manifold. If the Nijenhuis tensor of  $\varphi$  equals  $-2d\eta \otimes \xi$ , then  $(M, \varphi, \xi, \eta, g)$  is called *Sasakian manifold* [2]. For a Sasakian manifold, it is well-known that:

$$(\nabla_X \varphi) Y = g(X, Y) \xi - \eta(Y) X, \tag{1}$$

$$\nabla_X \xi = -\varphi X. \tag{2}$$

(see [3]).

A plane section in  $T_pM$  is a  $\varphi$ -section if there exists a vector  $X \in T_pM$  orthogonal to  $\xi$  such that  $\{X, \varphi X\}$  span the section. The sectional curvature of a  $\varphi$ -section is called  $\varphi$ -sectional curvature. For a Sasakian manifold of constant  $\varphi$ -sectional curvature (i.e. Sasakian space form), the curvature tensor R of M is given by

$$R(X, Y)Z = \frac{c+3}{4} \{g(Y, Z)X - g(X, Z)Y\} + \frac{c-1}{4} \{g(X, \varphi Z)\varphi Y - g(Y, \varphi Z)\varphi X + 2g(X, \varphi Y)\varphi Z + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\},$$
(3)

for all  $X, Y, Z \in TM$  [3].

A submanifold of a Sasakian manifold is called an *integral submanifold* if  $\eta(X) = 0$ , for every tangent vector X. A 1-dimensional integral submanifold of a Sasakian manifold  $(M^{2m+1}, \varphi, \xi, \eta, g)$  is called a *Legendre curve of* M [3]. Hence, a curve  $\gamma : I \to M = (M^{2m+1}, \varphi, \xi, \eta, g)$  is called a Legendre curve if  $\eta(T) = 0$ , where T is the tangent vector field of  $\gamma$ .

### 3. *f*-Biharmonic Legendre curves in Sasakian Space Forms

Let  $\gamma : I \to M$  be a curve parametrized by arc length in an *n*-dimensional Riemannian manifold (M, g). If there exist orthonormal vector fields  $E_1, E_2, ..., E_r$  along  $\gamma$  such that

$$E_{1} = \gamma' = T,$$

$$\nabla_{T}E_{1} = \kappa_{1}E_{2},$$

$$\nabla_{T}E_{2} = -\kappa_{1}E_{1} + \kappa_{2}E_{3},$$

$$\dots$$

$$\nabla_{T}E_{r} = -\kappa_{r-1}E_{r-1},$$
(4)

then  $\gamma$  is called a *Frenet curve of osculating order r*, where  $\kappa_1, ..., \kappa_{r-1}$  are positive functions on *I* and  $1 \le r \le n$ .

It is well-known that a Frenet curve of osculating order 1 is a *geodesic*; a Frenet curve of osculating order 2 is called a *circle* if  $\kappa_1$  is a non-zero positive constant; a Frenet curve of osculating order  $r \ge 3$  is called a *helix of order r* if  $\kappa_1, ..., \kappa_{r-1}$  are non-zero positive constants; a helix of order 3 is shortly called a *helix*.

An arc-length parametrized curve  $\gamma$  :  $(a, b) \rightarrow (M, g)$  is called an *f*-biharmonic curve with a function  $f : (a, b) \rightarrow (0, \infty)$  if the following equation is satisfied [11]:

$$f(\nabla_T \nabla_T \nabla_T T - R(T, \nabla_T T)T) + 2f' \nabla_T \nabla_T T + f'' \nabla_T T = 0.$$
(5)

Now let  $M = (M^{2m+1}, \varphi, \xi, \eta, g)$  be a Sasakian space form and  $\gamma : I \to M$  a Legendre Frenet curve of osculating order *r*. Differentiating

$$\eta(T) = 0 \tag{6}$$

and using (4), we get that

 $\eta(E_2) = 0. \tag{7}$ 

Using (3), (4) and (7), it can be seen that

 $\nabla_T \nabla_T T = -\kappa_1^2 E_1 + \kappa_1' E_2 + \kappa_1 \kappa_2 E_3,$ 

$$\begin{split} \nabla_{T} \nabla_{T} \nabla_{T} T &= -3\kappa_{1}\kappa_{1}'E_{1} + \left(\kappa_{1}'' - \kappa_{1}^{3} - \kappa_{1}\kappa_{2}^{2}\right)E_{2} \\ &+ \left(2\kappa_{1}'\kappa_{2} + \kappa_{1}\kappa_{2}'\right)E_{3} + \kappa_{1}\kappa_{2}\kappa_{3}E_{4}, \\ R(T, \nabla_{T}T)T &= -\kappa_{1}\frac{(c+3)}{4}E_{2} - 3\kappa_{1}\frac{(c-1)}{4}g(\varphi T, E_{2})\varphi T, \end{split}$$

(see [7]). If we denote the left-hand side of (5) with  $f.\tau_3$ , we find

$$\begin{aligned} \tau_{3} &= \nabla_{T} \nabla_{T} \nabla_{T} T - R(T, \nabla_{T} T) T + 2 \frac{f'}{f} \nabla_{T} \nabla_{T} T + \frac{f''}{f} \nabla_{T} T \\ &= \left( -3\kappa_{1}\kappa_{1}' - 2\kappa_{1}^{2} \frac{f'}{f} \right) E_{1} \\ &+ \left( \kappa_{1}'' - \kappa_{1}^{3} - \kappa_{1}\kappa_{2}^{2} + \kappa_{1} \frac{(c+3)}{4} + 2\kappa_{1}' \frac{f'}{f} + \kappa_{1} \frac{f''}{f} \right) E_{2} \\ &+ (2\kappa_{1}'\kappa_{2} + \kappa_{1}\kappa_{2}' + 2\kappa_{1}\kappa_{2} \frac{f'}{f}) E_{3} + \kappa_{1}\kappa_{2}\kappa_{3} E_{4} \\ &+ 3\kappa_{1} \frac{(c-1)}{4} g(\varphi T, E_{2}) \varphi T. \end{aligned}$$
(8)

Let  $k = \min \{r, 4\}$ . From (8), the curve  $\gamma$  is *f*-biharmonic if and only if  $\tau_3 = 0$ , that is,

(1) c = 1 or  $\varphi T \perp E_2$  or  $\varphi T \in span \{E_2, ..., E_k\}$ ; and

(2) 
$$q(\tau_3, E_i) = 0$$
, for all  $i = \overline{1, k}$ .

So we can state the following theorem:

**Theorem 3.1.** Let  $\gamma$  be a non-geodesic Legendre Frenet curve of osculating order r in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$  and  $k = \min\{r, 4\}$ . Then  $\gamma$  is f-biharmonic if and only if

(1) c = 1 or  $\varphi T \perp E_2$  or  $\varphi T \in span \{E_2, ..., E_k\}$ ; and

(2) the first k of the following equations are satisfied (replacing  $\kappa_k = 0$ ):

$$\begin{aligned} & 3\kappa_1' + 2\kappa_1 \frac{f'}{f} = 0, \\ \kappa_1^2 + \kappa_2^2 &= \frac{c+3}{4} + \frac{3(c-1)}{4} \left[ g(\varphi T, E_2) \right]^2 + \frac{\kappa_1''}{\kappa_1} + \frac{f''}{f} + 2\frac{\kappa_1'}{\kappa_1} \frac{f'}{f}, \\ \kappa_2' + \frac{3(c-1)}{4} g(\varphi T, E_2) g(\varphi T, E_3) + 2\kappa_2 \frac{f'}{f} + 2\kappa_2 \frac{\kappa_1'}{\kappa_1} = 0, \\ \kappa_2 \kappa_3 + \frac{3(c-1)}{4} g(\varphi T, E_2) g(\varphi T, E_4) = 0. \end{aligned}$$

From Theorem 3.1, it can be easily seen that a curve  $\gamma$  with constant geodesic curvature  $\kappa_1$  is *f*-biharmonic if and only if it is biharmonic. Since Fetcu and Oniciuc studied biharmonic Legendre curves in Sasakian space forms in [7], we study curves with non-constant geodesic curvature  $\kappa_1$  in this paper. If  $\gamma$  is a non-biharmonic *f*-biharmonic curve, then we call it *proper f*-biharmonic.

Now we give the interpretations of Theorem 3.1.

**Case I.** c = 1. In this case  $\gamma$  is proper *f*-biharmonic if and only if

$$3\kappa'_{1} + 2\kappa_{1}\frac{f'}{f} = 0,$$

$$\kappa_{1}^{2} + \kappa_{2}^{2} = 1 + \frac{\kappa_{1}''}{\kappa_{1}} + \frac{f''}{f} + 2\frac{\kappa_{1}'}{\kappa_{1}}\frac{f'}{f},$$

$$\kappa_{2}' + 2\kappa_{2}\frac{f'}{f} + 2\kappa_{2}\frac{\kappa_{1}'}{\kappa_{1}} = 0,$$

$$\kappa_{2}\kappa_{3} = 0.$$
(9)

Hence, we can state the following theorem:

**Theorem 3.2.** Let  $\gamma$  be a Legendre Frenet curve in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$ , c = 1 and m > 1. Then  $\gamma$  is proper *f*-biharmonic if and only if either

(*i*)  $\gamma$  is of osculating order r = 2 with  $f = c_1 \kappa_1^{-3/2}$  and  $\kappa_1$  satisfies

$$t \pm \frac{1}{2} \arctan\left(\frac{2 + c_3 \kappa_1}{2\sqrt{-\kappa_1^2 - c_3 \kappa_1 - 1}}\right) + c_4 = 0, \tag{10}$$

where  $c_1 > 0$ ,  $c_3 < -2$  and  $c_4$  are arbitrary constants, t is the arc-length parameter and

$$\frac{1}{2}(-\sqrt{c_3^2 - 4} - c_3) < \kappa_1(t) < \frac{1}{2}(\sqrt{c_3^2 - 4} - c_3); or$$
(11)

(ii)  $\gamma$  is of osculating order r = 3 with  $f = c_1 \kappa_1^{-3/2}$ ,  $\frac{\kappa_2}{\kappa_1} = c_2$  and  $\kappa_1$  satisfies

$$t \pm \frac{1}{2} \arctan\left(\frac{2 + c_3 \kappa_1}{2\sqrt{-(1 + c_2^2)\kappa_1^2 - c_3 \kappa_1 - 1}}\right) + c_4 = 0,$$
(12)

where  $c_1 > 0$ ,  $c_2 > 0$ ,  $c_3 < -2\sqrt{(1+c_2^2)}$  and  $c_4$  are arbitrary constants, t is the arc-length parameter and

$$\frac{1}{2(1+c_2^2)}\left(-\sqrt{c_3^2-4(1+c_2^2)}-c_3\right) < \kappa_1(t) < \frac{1}{2(1+c_2^2)}\left(\sqrt{c_3^2-4(1+c_2^2)}-c_3\right).$$
(13)

642

(16)

*Proof.* From the first equation of (9), it is easy to see that  $f = c_1 \kappa_1^{-3/2}$  for an arbitrary constant  $c_1 > 0$ . So, we find

$$\frac{f'}{f} = \frac{-3}{2} \frac{\kappa_1'}{\kappa_1}, \frac{f''}{f} = \frac{15}{4} \left(\frac{\kappa_1'}{\kappa_1}\right)^2 - \frac{3}{2} \frac{\kappa_1''}{\kappa_1}.$$
(14)

If  $\kappa_2 = 0$ , then  $\gamma$  is of osculating order r = 2 and the first two of equations (9) must be satisfied. Hence the second equation and (14) give us the ODE

$$3(\kappa_1')^2 - 2\kappa_1\kappa_1'' = 4\kappa_1^2(\kappa_1^2 - 1).$$
<sup>(15)</sup>

Let  $\kappa_1 = \kappa_1(t)$ , where *t* denotes the arc-length parameter. If we solve (15), we find (10). Since (10) must be well-defined,  $-\kappa_1^2 - c_3\kappa_1 - 1 > 0$ . Since  $\kappa_1 > 0$ , we have  $c_3 < -2$  and (11).

If  $\kappa_2 = constant \neq 0$ , we find f is a constant. Hence  $\gamma$  is not proper f-biharmonic in this case. Let  $\kappa_2 \neq constant$ . From the fourth equation of (9), we have  $\kappa_3 = 0$ . So,  $\gamma$  is of osculating order r = 3. The third equation of (9) gives us  $\frac{\kappa_2}{\kappa_1} = c_2$ , where  $c_2 > 0$  is a constant. Replacing in the second equation of (9), we have the ODE

$$3(\kappa_1')^2 - 2\kappa_1\kappa_1'' = 4\kappa_1^2[(1+c_2^2)\kappa_1^2 - 1]$$

which has the general solution (12) under the condition  $c_3 < -2\sqrt{(1+c_2^2)}$ . (13) must be also satisfied.

**Remark 3.3.** If m = 1, then M is a 3-dimensional Sasakian space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see [1]), we can write  $\kappa_1 > 0$  and  $\kappa_2 = 1$ . The first and the third equations of (9) give us f is a constant. Hence  $\gamma$  cannot be proper f-biharmonic.

**Case II.**  $c \neq 1$ ,  $\varphi T \perp E_2$ . In this case,  $g(\varphi T, E_2) = 0$ . From Theorem 3.1, we obtain

$$\begin{aligned} & 3\kappa_1' + 2\kappa_1 \frac{f'}{f} = 0, \\ & \kappa_1^2 + \kappa_2^2 = \frac{c+3}{4} + \frac{\kappa_1''}{\kappa_1} + \frac{f''}{f} + 2\frac{\kappa_1'}{\kappa_1}\frac{f'}{f}, \\ & \kappa_2' + 2\kappa_2 \frac{f'}{f} + 2\kappa_2 \frac{\kappa_1'}{\kappa_1} = 0, \\ & \kappa_2 \kappa_3 = 0. \end{aligned}$$

Firstly, we need the following proposition from [7]:

**Proposition 3.4.** [7] Let  $\gamma$  be a Legendre Frenet curve of osculating order 3 in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$ and  $\varphi T \perp E_2$ . Then  $\{T = E_1, E_2, E_3, \varphi T, \nabla_T \varphi T, \xi\}$  is linearly independent at any point of  $\gamma$ . Therefore  $m \ge 3$ .

Now we can state the following Theorem:

**Theorem 3.5.** Let  $\gamma$  be a Legendre Frenet curve in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$ ,  $c \neq 1$  and  $\varphi T \perp E_2$ . Then  $\gamma$  is proper biharmonic if and only if

(1)  $\gamma$  is of osculating order r = 2 with  $f = c_1 \kappa_1^{-3/2}$ ,  $m \ge 2$ ,  $\{T = E_1, E_2, \varphi T, \nabla_T \varphi T, \xi\}$  is linearly independent and (a) if c > -3, then  $\kappa_1$  satisfies

$$t \pm \frac{1}{\sqrt{c+3}} \arctan\left(\frac{c+3+2c_3\kappa_1}{\sqrt{c+3}\sqrt{-4\kappa_1^2-4c_3\kappa_1-c-3}}\right) + c_4 = 0,$$

(b) if c = -3, then  $\kappa_1$  satisfies

$$t \pm \frac{\sqrt{-\kappa_1(\kappa_1 + c_3)}}{c_3 \kappa_1} + c_4 = 0,$$

(c) if c < -3, then  $\kappa_1$  satisfies

$$t \pm \frac{1}{\sqrt{-c-3}} \ln \left( \frac{c+3+2c_3\kappa_1 - \sqrt{-c-3}\sqrt{-4\kappa_1^2 - 4c_3\kappa_1 - c-3}}{(c+3)\kappa_1} \right) + c_4 = 0; \text{ or }$$

(2)  $\gamma$  is of osculating order r = 3 with  $f = c_1 \kappa_1^{-3/2}$ ,  $\frac{\kappa_2}{\kappa_1} = c_2 = constant > 0$ ,  $m \ge 3$ ,  $\{T = E_1, E_2, E_3, \varphi T, \nabla_T \varphi T, \xi\}$ is linearly independent and

(a) if c > -3, then  $\kappa_1$  satisfies

$$t \pm \frac{1}{\sqrt{c+3}} \arctan\left(\frac{c+3+2c_3\kappa_1}{\sqrt{c+3}\sqrt{-4(1+c_2^2)\kappa_1^2-4c_3\kappa_1-c-3}}\right) + c_4 = 0,$$

(b) if c = -3, then  $\kappa_1$  satisfies

$$t \pm \frac{\sqrt{-\kappa_1 \left[ (1+c_2^2)\kappa_1 + c_3 \right]}}{c_3 \kappa_1} + c_4 = 0,$$

(c) if c < -3, then  $\kappa_1$  satisfies

$$t \pm \frac{1}{\sqrt{-c-3}} \ln \left( \frac{c+3+2c_3\kappa_1 - \sqrt{-c-3}\sqrt{-4(1+c_2^2)\kappa_1^2 - 4c_3\kappa_1 - c - 3}}{(c+3)\kappa_1} \right) + c_4 = 0,$$

where  $c_1 > 0$ ,  $c_2 > 0$ ,  $c_3$  and  $c_4$  are convenient arbitrary constants, t is the arc-length parameter and  $\kappa_1(t)$  is in convenient open interval.

*Proof.* The proof is similar to the proof of Theorem 3.2.  $\Box$ 

**Case III.**  $c \neq 1$ ,  $\varphi T \parallel E_2$ .

In this case,  $\varphi T = \pm E_2$ ,  $g(\varphi T, E_2) = \pm 1$ ,  $g(\varphi T, E_3) = g(\pm E_2, E_3) = 0$  and  $g(\varphi T, E_4) = g(\pm E_2, E_4) = 0$ . From Theorem 3.1,  $\gamma$  is biharmonic if and only if

$$3\kappa_{1}' + 2\kappa_{1}\frac{f'}{f} = 0,$$

$$\kappa_{1}^{2} + \kappa_{2}^{2} = c + \frac{\kappa_{1}'}{\kappa_{1}} + \frac{f''}{f} + 2\frac{\kappa_{1}'}{\kappa_{1}}\frac{f'}{f},$$

$$\kappa_{2}' + 2\kappa_{2}\frac{f'}{f} + 2\kappa_{2}\frac{\kappa_{1}'}{\kappa_{1}} = 0,$$

$$\kappa_{2}\kappa_{3} = 0.$$

$$(17)$$

Since  $\varphi T \parallel E_2$ , it is easily proved that  $\kappa_2 = 1$ . Then, the first and the third equations of (17) give us *f* is a constant. Thus, we give the following Theorem:

**Theorem 3.6.** There does not exist any proper f-biharmonic Legendre curve in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$ with  $c \neq 1$  and  $\varphi T \parallel E_2$ .

**Case IV.**  $c \neq 1$  and  $g(\varphi T, E_2)$  is not constant 0, 1 or -1. Now, let  $(M^{2m+1}, \varphi, \xi, \eta, g)$  be a Sasakian space form and  $\gamma : I \to M$  a Legendre curve of osculating order *r*, where  $4 \le r \le 2m + 1$  and  $m \ge 2$ . If  $\gamma$  is *f*-biharmonic, then  $\varphi T \in span \{E_2, E_3, E_4\}$ . Let  $\theta(t)$  denote the angle function between  $\varphi T$  and  $E_2$ , that is,  $g(\varphi T, E_2) = \cos \theta(t)$ . Differentiating  $g(\varphi T, E_2)$  along  $\gamma$  and using (1) and (4), we find

$$-\theta'(t)\sin\theta(t) = \nabla_T g(\varphi T, E_2) = g(\nabla_T \varphi T, E_2) + g(\varphi T, \nabla_T E_2)$$
  
=  $g(\xi + \kappa_1 \varphi E_2, E_2) + g(\varphi T, -\kappa_1 T + \kappa_2 E_3)$   
=  $\kappa_2 g(\varphi T, E_3).$  (18)

If we write  $\varphi T = g(\varphi T, E_2)E_2 + g(\varphi T, E_3)E_3 + g(\varphi T, E_4)E_4$ , Theorem 3.1 gives us

$$3\kappa_1' + 2\kappa_1 \frac{f'}{f} = 0,$$
(19)

$$\kappa_1^2 + \kappa_2^2 = \frac{c+3}{4} + \frac{3(c-1)}{4}\cos^2\theta + \frac{\kappa_1''}{\kappa_1} + \frac{f''}{f} + 2\frac{\kappa_1'}{\kappa_1}\frac{f'}{f},$$
(20)

$$\kappa_2' + \frac{3(c-1)}{4}\cos\theta g(\varphi T, E_3) + 2\kappa_2 \frac{f'}{f} + 2\kappa_2 \frac{\kappa_1'}{\kappa_1} = 0,$$
(21)

$$\kappa_2 \kappa_3 + \frac{3(c-1)}{4} \cos \theta g(\varphi T, E_4) = 0.$$
(22)

If we put (14) in (20) and (21) respectively, we obtain

$$\kappa_1^2 + \kappa_2^2 = \frac{c+3}{4} + \frac{3(c-1)}{4}\cos^2\theta - \frac{\kappa_1''}{2\kappa_1} + \frac{3}{4}\left(\frac{\kappa_1'}{\kappa_1}\right)^2,$$
(23)

$$\kappa_2' - \frac{\kappa_1'}{\kappa_1}\kappa_2 + \frac{3(c-1)}{4}\cos\theta g(\varphi T, E_3) = 0.$$
(24)

If we multiply (24) with  $2\kappa_2$ , using (18), we find

$$2\kappa_2\kappa_2' - 2\frac{\kappa_1'}{\kappa_1}\kappa_2^2 + \frac{3(c-1)}{4}(-2\theta'\cos\theta\sin\theta) = 0.$$
(25)

Let us denote  $v(t) = \kappa_2^2(t)$ , where *t* is the arc-length parameter. Then (25) becomes

$$\upsilon' - 2\frac{\kappa_1'}{\kappa_1}\upsilon = -\frac{3(c-1)}{4}(-2\theta'\cos\theta\sin\theta),\tag{26}$$

which is a linear ODE. If we solve (26), we obtain the following results:

*i*) If  $\theta$  is a constant, then

$$\frac{\kappa_2}{\kappa_1} = c_2,\tag{27}$$

where  $c_2 > 0$  is an arbitrary constant. From (18), we find  $g(\varphi T, E_3) = 0$ . Since  $\|\varphi T\| = 1$  and  $\varphi T = \cos \theta E_2 + g(\varphi T, E_4)E_4$ , we get  $g(\varphi T, E_4) = \pm \sin \theta$ . By the use of (20) and (27), we find

$$3(\kappa_1')^2 - 2\kappa_1\kappa_1'' = 4\kappa_1^2[(1+c_2^2)\kappa_1^2 - \frac{c+3+3(c-1)\cos^2\theta}{4}].$$

*ii*) If  $\theta = \theta(t)$  is a non-constant function, then

$$\kappa_2^2 = -\frac{3(c-1)}{4}\cos^2\theta + \lambda(t).\kappa_1^2,$$
(28)

where

$$\lambda(t) = -\frac{3(c-1)}{2} \int \frac{\cos^2 \theta \kappa_1'}{\kappa_1^3} dt.$$
<sup>(29)</sup>

If we write (28) in (23), we have

$$[1+\lambda(t)] \cdot \kappa_1^2 = \frac{c+3+6(c-1)\cos^2\theta}{4} - \frac{\kappa_1''}{2\kappa_1} + \frac{3}{4} \left(\frac{\kappa_1'}{\kappa_1}\right)^2.$$

Now we can state the following Theorem:

**Theorem 3.7.** Let  $\gamma : I \to M$  be a Legendre curve of osculating order r in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$ , where  $r \ge 4$ ,  $m \ge 2$ ,  $c \ne 1$ ,  $g(\varphi T, E_2) = \cos \theta(t)$  is not constant 0, 1 or -1. Then  $\gamma$  is proper *f*-biharmonic if and only if  $f = c_1 \kappa_1^{-3/2}$  and (i) if  $\theta$  is a constant,

$$\begin{aligned} \frac{\kappa_2}{\kappa_1} &= c_2, \\ 3(\kappa_1')^2 - 2\kappa_1\kappa_1'' &= 4\kappa_1^2[(1+c_2^2)\kappa_1^2 - \frac{c+3+3(c-1)\cos^2\theta}{4}], \\ \kappa_2\kappa_3 &= \pm \frac{3(c-1)\sin 2\theta}{8}, \end{aligned}$$

(*ii*) *if*  $\theta$  *is a non-constant function,* 

$$\begin{aligned} \kappa_2^2 &= -\frac{3(c-1)}{4}\cos^2\theta + \lambda(t).\kappa_1^2, \\ 3(\kappa_1')^2 &- 2\kappa_1\kappa_1'' = 4\kappa_1^2[(1+\lambda(t))\kappa_1^2 - \frac{c+3+6(c-1)\cos^2\theta}{4}], \\ \kappa_2\kappa_3 &= \pm \frac{3(c-1)\sin 2\theta \sin w}{8}, \end{aligned}$$

where  $c_1$  and  $c_2$  are positive constants,  $\varphi T = \cos \theta E_2 \pm \sin \theta \cos w E_3 \pm \sin \theta \sin w E_4$ , w is the angle function between  $E_3$  and the orthogonal projection of  $\varphi T$  onto span  $\{E_3, E_4\}$ . w is related to  $\theta$  by  $\cos w = \frac{-\theta'}{\kappa_2}$  and  $\lambda(t)$  is given by

$$\lambda(t) = -\frac{3(c-1)}{2} \int \frac{\cos^2 \theta \kappa_1'}{\kappa_1^3} dt.$$

We can give the following direct corollary of Theorem 3.7:

**Corollary 3.8.** Let  $\gamma : I \to M$  be a Legendre curve of osculating order r in a Sasakian space form  $(M^{2m+1}, \varphi, \xi, \eta, g)$ , where  $r \ge 4$ ,  $m \ge 2$ ,  $c \ne 1$ ,  $g(\varphi T, E_2) = \cos \theta$  is a constant and  $\theta \in (0, 2\pi) \setminus \left\{\frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$ . Then  $\gamma$  is proper *f*-biharmonic if and only if  $f = c_1 \kappa_1^{-3/2}$ ,  $\frac{\kappa_2}{\kappa_1} = c_2 = constant > 0$ ,

$$\begin{aligned} \kappa_2 \kappa_3 &= \pm \frac{3(c-1)\sin 2\theta}{8}, \\ \kappa_4 &= \pm \frac{\eta(E_5) + g(\varphi E_2, E_5)\kappa_1}{\sin \theta} \text{ (if } r > 4); \text{ and} \end{aligned}$$

(*i*) *if* a > 0, *then*  $\kappa_1$  *satisfies* 

$$t \pm \frac{1}{2\sqrt{a}} \arctan\left(\frac{1}{2\sqrt{a}} \frac{2a + c_3\kappa_1}{\sqrt{-(1 + c_2^2)\kappa_1^2 - c_3\kappa_1 - a}}\right) + c_4 = 0,$$

(*ii*) *if* a = 0, then  $\kappa_1$  satisfies

$$t\pm \frac{\sqrt{-\kappa_1\left[(1+c_2^2)\kappa_1+c_3\right]}}{c_{3}\kappa_1}+c_4=0,$$

*(iii) if a < 0, then*  $\kappa_1$  *satisfies* 

$$t \pm \frac{1}{2\sqrt{-a}} \ln\left(\frac{2a + c_3\kappa_1 - 2\sqrt{-a}\sqrt{-(1 + c_2^2)\kappa_1^2 - c_3\kappa_1 - a}}{2a\kappa_1}\right) + c_4 = 0,$$

where  $a = [c + 3 + 3(c - 1)\cos^2 \theta]/4$ ,  $\varphi T = \cos \theta E_2 \pm \sin \theta E_4$ ,  $c_1 > 0$ ,  $c_2 > 0$ ,  $c_3$  and  $c_4$  are convenient arbitrary constants, t is the arc-length parameter and  $\kappa_1(t)$  is in convenient open interval.

In order to obtain explicit examples, we will first need to recall some notions about the Sasakian space form  $\mathbb{R}^{2m+1}(-3)$  [3]:

Let us consider  $M = \mathbb{R}^{2m+1}$  with the standard coordinate functions  $(x_1, ..., x_m, y_1, ..., y_m, z)$ , the contact structure  $\eta = \frac{1}{2}(dz - \sum_{i=1}^{m} y_i dx_i)$ , the characteristic vector field  $\xi = 2\frac{\partial}{\partial z}$  and the tensor field  $\varphi$  given by

$$\varphi = \begin{bmatrix} 0 & \delta_{ij} & 0 \\ -\delta_{ij} & 0 & 0 \\ 0 & y_j & 0 \end{bmatrix}.$$

The associated Riemannian metric is  $g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{m} ((dx_i)^2 + (dy_i)^2)$ . Then  $(M, \varphi, \xi, \eta, g)$  is a Sasakian space form with constant  $\varphi$ -sectional curvature c = -3 and it is denoted by  $\mathbb{R}^{2m+1}(-3)$ . The vector fields

$$X_{i} = 2\frac{\partial}{\partial y_{i}}, \ X_{m+i} = \varphi X_{i} = 2(\frac{\partial}{\partial x_{i}} + y_{i}\frac{\partial}{\partial z}), i = \overline{1, m}, \ \xi = 2\frac{\partial}{\partial z}$$
(30)

form a g-orthonormal basis and the Levi-Civita connection is calculated as

$$\nabla_{X_i} X_j = \nabla_{X_{m+i}} X_{m+j} = 0, \nabla_{X_i} X_{m+j} = \delta_{ij} \xi, \nabla_{X_{m+i}} X_j = -\delta_{ij} \xi,$$
$$\nabla_{X_i} \xi = \nabla_{\xi} X_i = -X_{m+i}, \nabla_{X_{m+i}} \xi = \nabla_{\xi} X_{m+i} = X_i,$$

(see [3]).

Now, let us produce examples of proper *f*-biharmonic Legendre curves in  $\mathbb{R}^7(-3)$ : Let  $\gamma = (\gamma_1, ..., \gamma_7)$  be a unit speed curve in  $\mathbb{R}^7(-3)$ . The tangent vector field of  $\gamma$  is

$$T = \frac{1}{2} \left[ \gamma_4' X_1 + \gamma_5' X_2 + \gamma_6' X_3 + \gamma_1' X_4 + \gamma_2' X_5 + \gamma_3' X_6 + (\gamma_7' - \gamma_1' \gamma_4 - \gamma_2' \gamma_5 - \gamma_3' \gamma_6) \xi \right].$$

Thus,  $\gamma$  is a unit speed Legendre curve if and only if  $\eta(T) = 0$  and g(T, T) = 1, that is,

$$\gamma_7' = \gamma_1' \gamma_4 + \gamma_2' \gamma_5 + \gamma_3' \gamma_6$$

and

$$(\gamma'_1)^2 + \dots + (\gamma'_6)^2 = 4.$$

For a Legendre curve, we can use the Levi-Civita connection and (30) to write

$$\nabla_T T = \frac{1}{2} \left( \gamma_4'' X_1 + \gamma_5'' X_2 + \gamma_6'' X_3 + \gamma_1'' X_4 + \gamma_2'' X_5 + \gamma_3'' X_6 \right), \tag{31}$$

$$\varphi T = \frac{1}{2} (-\gamma_1' X_1 - \gamma_2' X_2 - \gamma_3' X_3 + \gamma_4' X_4 + \gamma_5' X_5 + \gamma_6' X_6).$$
(32)

From (31) and (32),  $\varphi T \perp E_2$  if and only if

 $\gamma_1''\gamma_4'+\gamma_2''\gamma_5'+\gamma_3''\gamma_6'=\gamma_1'\gamma_4''+\gamma_2'\gamma_5''+\gamma_3'\gamma_6'.$ 

Finally, we can give the following explicit examples:

**Example 3.9.** Let us take  $\gamma(t) = (2 \sinh^{-1}(t), \sqrt{1+t^2}, \sqrt{3}\sqrt{1+t^2}, 0, 0, 0, 1)$  in  $\mathbb{R}^7(-3)$ . Using the above equations and Theorem 3.5,  $\gamma$  is a proper *f*-biharmonic Legendre curve with osculating order r = 2,  $\kappa_1 = \frac{1}{1+t^2}$ ,  $f = c_1(1+t^2)^{3/2}$ where  $c_1 > 0$  is a constant. We can easily check that the conditions of Theorem 3.5 (i.e.  $c \neq 1$ ,  $\varphi T \perp E_2$ ) are verified, *where*  $c_3 = -1$  *and*  $c_4 = 0$ *.* 

**Example 3.10.** Let  $\gamma(t) = (a_1, a_2, a_3, \sqrt{2}t, 2\sinh^{-1}(\frac{t}{\sqrt{2}}), \sqrt{2}\sqrt{2+t^2}, a_4)$  be a curve in  $\mathbb{R}^7(-3)$ , where  $a_i \in \mathbb{R}$ ,  $i = \overline{1, 4}$ . Then we calculate

$$T = \frac{\sqrt{2}}{2}X_1 + \frac{1}{\sqrt{2+t^2}}X_2 + \frac{\sqrt{2}t}{2\sqrt{2+t^2}}X_3,$$
  

$$E_2 = \frac{-t}{\sqrt{2+t^2}}X_2 + \frac{\sqrt{2}}{\sqrt{2+t^2}}X_3,$$
  

$$E_3 = \frac{\sqrt{2}}{2}X_1 - \frac{1}{\sqrt{2+t^2}}X_2 - \frac{\sqrt{2}t}{2\sqrt{2+t^2}}X_3,$$
  

$$\kappa_1 = \kappa_2 = \frac{1}{2+t^2}, r = 3.$$

From Theorem 3.5, it follows that  $\gamma$  is proper f-biharmonic with  $f = c_1(2 + t^2)^{3/2}$ , where  $c_1 > 0$ ,  $c_2 = 1$ ,  $c_3 = -1$  and  $c_4 = 0.$ 

# References

- [1] C. Baikoussis, D. E. Blair, On Legendre curves in contact 3-manifolds, Geom. Dedicata 49 (1994) 135–142.
- [2] D. E. Blair, Geometry of manifolds with structural group  $\mathcal{U}(n) \times O(s)$ , J. Differential Geometry 4 (1970) 155–167.
- [3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, 2002.
- [4] B.Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996) 117-337.
- [5] Jr. J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109–160.
- D. Fetcu, Biharmonic Legendre curves in Sasakian space forms, J. Korean Math. Soc. 45 (2008) 393-404. [6]
- [7] D. Fetcu, C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math. 240 (2009) 85–107.
- [8] G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986) 389-402.
- [9] W. J. Lu, On *f*-biharmonic maps between Riemannian manifolds, arXiv:1305.5478.
- [10] S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006) no. 2 1–22.
- [11] Y. L. Ou, On *f*-biharmonic maps and *f*-biharmonic submanifolds, arXiv:1306.3549v1.
- [12] C. Özgür, Ş. Güvenç, On biharmonic Legendre curves in S-space forms, Turkish J. Math. 38 (2014) no. 3 454–461.
  [13] C. Özgür, Ş. Güvenç, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collect. Math. 65 (2014) no. 2 203-218.