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The fractals are obtained by using the model of diffusion-limited aggregation (DLA) for the lattice
with L = 80, 120, and 160. The values of the fractal dimensions are compared with the results of
former studies. As increasing the linear dimensions they are in good agreement with those. The
fractals obtained by using the model of DLA are simulated on the Creutz cellular automaton by using
a two-bit demon. The values computed for the critical temperature and the static critical exponents
within the framework of the finite-size scaling theory are in agreement with the results of other

simulations and theoretical values.
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1. Introduction

The diffusion-limited aggregation (DLA) model
was first introduced in 1981 by Witten and
Sander [1,2]. The application of fractal concepts,
which were first introduced by Mandelbrot et al. to
describe complex natural shapes and structures as
well as mathematical sets and functions having an
intricately irregular form, has been studied [3 —6]. The
aggregation of particles to form cluster has, for a long
time, been one of the central phenomena in natural
science with important implications for physical
problems such as air pollution, dielectric breakdown,
bacterial colony growth, and natural formations (e. g.
snowflakes and manganese dendrites). The model al-
lowing exploration of the process of pattern formation
in real physical systems is based mostly on the model
of diffusion-limited aggregation. This model describes
the most important morphology patterns observed in
various non-equilibrium systems, such as DLA-like,
dendrite, needle, treelike, dense-branching, compact,
stingy, spiral, and chiral structures [7—14]. In this
paper, we obtained fractals by using the model of DLA
for the lattice with L = 80, 120, and 160. The fractal
dimensions obtained for the fractal clusters were also
compared with results of other studies [15-21].

The Creutz cellular automaton [22] has simulated
the two-dimensional Ising model successfully near the
critical region, and has reproduced its critical expo-
nents within the framework of the finite-size scaling
theory [23,24]. This algorithm is an order of magni-
tude faster than the conventional Monte Carlo method
and does not need high quality random numbers. These
features of the Creutz cellular automaton would make
the Ising model simulations in higher dimensions more
practical. Compared to the Q2R cellular automaton
—that is a two-state-per-site cellular automaton which
is both deterministic and reversible (see [25] for de-
tails) — it has the advantage of allowing the specific
heat to be computed from the internal energy flucta-
tions. In the present work, the fractals obtained by us-
ing the model of DLA are first simulated on the Creutz
cellular automaton by using a two-bit demon. The pur-
pose of this paper is to test the finite-size scaling re-
lations for the Ising model in d = 2 dimensions. The
simulations are carried out on the Creutz cellular au-
tomaton, which has successfully arisen as an alterna-
tive research tool for Ising models in the dimensional-
ities 2 < d < 8 [26].

The model is introduced in Section 2, the results are
discussed in Section 3, and a conclusion is given in
Section 4.
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2. Model

In the model of DLA, the initial state is a seed par-
ticle at the origin of a lattice. A second particle is
added at some random site at large distance from the
origin. This particle walks randomly until it visits a
site adjacent to the seed. Then the walking particle be-
comes part of the cluster. Another particle is now intro-
duced at a random distant point, and so on. If a particle
touches the boundaries of the lattice in its random walk
it is removed and another one is introduced. The frac-
tals in Figure 1 have been obtained by using the model
of DLA for the lattice with L = 80, 120, and 160.

The two-dimensional Ising model for the fractal ob-
tained by using the model of DLA at Figure 1 is sim-
ulated on the Creutz cellular automaton. In the Creutz
cellular automaton, four binary bits are associated with
each site of the lattice. The value for each site is deter-
mined from its value and those of its nearest neigh-
bours at the previous time step. The updating rule,
which defines a deterministic cellular automaton, is as
follows. Of the four binary bits on each site, the first

(a) (b)

(©)

Fig. 1. Images of the fractals obtained by using the model
of DLA for lattices with the linear dimensions (a) L = 80,
(b) L =120, and (c) L = 160.
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one is the Ising spin B;. Its value may be ‘0’ or ‘1°. The
Ising spin energy (internal energy) of the lattice, Hy, is
given ( in units of the nearest neighbour coupling con-
stant J) by

Hy=—-JY SiS;, (1)
(i)

where S; = 2B; — 1, and (i, j) denotes the sum over all
nearest neighbour pairs of sites. The second and the
third bits are for the momentum variable conjugate to
the spin (the demon). These two bits form an integer
which can take on the value 0, 1, 2, or 3. The kinetic
energy (in units of J) associated with the demon can
take on four times these integer values. The total en-

ergy
H = Hi+ Hyg 2

is conserved; here Hk is the kinetic energy of the lat-
tice. For a given total energy the system temperature 7'
(in units of J/kg, where kg is the Boltzmann con-
stant) is obtained from the average value of the ki-
netic energy. The fourth bit provides a checkerboard
style updating, and so it allows the simulation of the
Ising model on a cellular automaton. The black sites
of the checkerboard are updated and then their colour
is changed into white: the white sites are changed into
black without being updated.

The updating rules for the spin and the momentum
variables are as follows: For a site to be updated its
spin is flipped and the change in the Ising energy (in-
ternal energy) Hj is calculated. If this energy change
is transferable to or from the momentum variable as-
sociated with this site, such that the total energy H is
conserved, then this change is done and the momen-
tum is appropriately changed. Otherwise the spin and
the momentum are not changed.

As the initial configuration all spins are taken or-
dered (up or down). The initial kinetic energy is given
to the lattice via the second bits of the momentum
variables in the white sites randomly. The quantities
computed are averages over the lattice and the num-
ber of time steps during which the cellular automaton
develops.

The simulations are carried out on simple hyper-
cubic lattices L? of linear dimensions 80 < L < 160
with periodic boundary conditions by using two-bit
demons. The cellular automaton develops 9.6 x 10°
(L = 80, 120, 160) sweeps for each run with 7 runs
for each total energy.
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Fig. 2. The log-log plot of N(r) versus 1/r with the slopes
giving the values of D = 1.389(52) (m) (Fit interval 1-
40), D = 1.678(43) (o) (Fit interval 1-63), and D =
1.701(32) (A) (Fit interval 1—81) for the lattice with L = 80,
120, and 160, respectively.

3. Results and Discussion

The fractals obtained by using the model of
diffusion-limited aggregation are illustrated in Figure 1
for the lattice with L = 80, 120, and 160.

We used the mass-radius method to determine
the fractal dimensions of Figure 1. The mass-radius
method [7,9] is based on finding the relation between
the mass N(r), within circles of radius r whose origin
is placed at a point on the object, i.e. the distance r.
The fractal dimension is then determined from the re-
lation

N(r)e<(1/r)". 3)

In order to apply this method, we assumed that N (7)
is proportional to the length of the traced branch within
a circle of radius r. The fractal dimension D was ob-
tained from the slope of the log-log plots of N(r) ver-
sus 1/r, and the standard error was calculated using a
linear regression method. We verified the accuracy of
this procedure by analysing a mathematical Hausdorff
set known as a Koch curve with D =log3/log2. The
log-log plots of N(r) against 1/r are illustrated in Fig-
ure 2 for the lattice with L = 80, 120, and 160.

The computed values of D = 1.389(52), D =
1.678(43), and D = 1.701(32) whose fit intervals are
1-40, 1-63, 1-81, respectively, are in agreement
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Fig. 3. Temperature dependence of (a) the order parame-
ter (M) and (b) the magnetic suscebtibility () of the two-
dimensional Ising model for the lattice with L = 80, 120,
and 160.

with D = 1.8753(6), D = 1.8752(8), D = 1.9476(3),
D = 1.9473(4) whose fit intervals are 64—512, and
D = 1.665(3) whose fit interval is 848 [15], D =
187 — 1.9479.... (the exact prediction) [16], D = 3 =
1.666... [17],D=1.87(1) [18], D = % = 1.875 (the
exact prediction) [19], D = 17‘1 (the exact prediction)
[20,21].

In d = 2 dimensions, the finite-size scaling theory

gives the following scaling forms for the quantities of
interest [23,24,27]:

M=LPlx(x), “
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Fig. 4. Value of the infinite-lattice critical temperature for the
magnetic susceptibility Ymax; TCX = 2.2689 was obtained by
extrapolating the straight line fitted to the critical temperature
of the lattice with the linear dimension 80 < L < 160.
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Fig. 5. Finite-size scaling plot for the order parameter M for
T < Ty(e0) (B = 0.125) and for T > T () (B’ = 0.875); t =
|T = Te(e0) |/ Te (o).
x =LY (x), (5)

where x =LY, t = |T — T.| /T, is the reduced temper-
ature, and T is the critical temperature of the infinite
lattice. The shape functions X and Y behave asymtoti-
cally as

X (x) = BxP, (6)

Y(x)=Gx77. (7
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Fig. 6. Finite-size scaling plot for the susceptibility x.
@ T <Te(eo0), t = |T = Te(o0)[/Te(e0); (b) T > Te(o0), 1 =
T —Te(o0)[ /T (e0).
(4) and (5) take the following forms at 7 = T¢:
Mo LB/, (8)

XL, ©)
andat T = T;(L),

Ximax o< L1". (10)
The finite-size scaling relation for T (L) is
T, —To(L) o< L™/, (11)

The critical exponents o, B, v, and v are those of
the infinite lattice. Since v = 1 in d = 2 dimensions,
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Fig. 7. The log-log plot of M, against L (80 < L < 160) with
the slope giving the value of /v = 0.1297.

(11) takes the following form:

T.—To(L) o< L' (12)
The temperature dependence of the order parameter M
and the magnetic susceptibility y are illustrated in Fig-
ure 3.

The maxima for the magnetic susceptibility oc-
curs at TZ(80) = 2.2966, T*(120) = 2.2873, and
TX(160) = 2.2828, respectively. (12) is used to get the
critical temperature of the infinite lattice (Fig. 4).

The computed value of 7, = 2.2689 is in better
agreement with the theoretical prediction of T;(eo) =
2.269 [23,24,27] and the Creutz cellular automaton
T.(e0) = 2.263 [24].

The data obtained for the order parameter M were
analyzed by using the finite-size scaling plot given in
Figure 5.

The data lie on a single curve for temperatures both
above and below T, = 2.2689, and validate the finite-
size scaling. The straight line passing through the data
for T < Ty(e°) in Figure 5 describes (6). The straight
line passing through the data for 7 > T (o) behaves
according to this equation with §/ = 1 — 8 replacing 3
and some other constant replacing B. Thus, the data
for M are in agreement with the theoretical value § =
0.125 for T < T;(e0) and B’ = 0.875 for T > T¢(co).

The data obtained for the susceptibility y were an-
alyzed by making use of the finite-size scaling plot
given in Figure 6.

The data lie on a single curve for temperatures both
above and below T, = 2.2689, and validate the finite-
size scaling. The straight line passing through the data
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Fig. 8. (a) log-log plot of . against L (80 < L < 160) with
the slope giving the value of y/v = 1.8333; (b) log-log plot
of Ymax against L (80 < L < 160) with the slope giving the
value of y/v = 1.777.

for T < Ti(e0) and T > T;(eo) in Figure 6 describes (7).
The scaling of the susceptibility data agrees well with
the asymtotic form, and with the critical exponent y =
1.75 for T > T(e0) and T' < T¢.(o0).

The slope of the log-log plot of M,(L) against L in
Figure 7, described by (8), gives the result of /v =
0.1297 at T, = 2.2689, which is in good agreement
with the theoretical value f§ /v = 0.125.

The slope of the log-log plot of x.(L) against L in
Figure 8a, described by (9), gives the result of y/v =
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1.8333 at T. = 2.2689, which is in agreement with
the theoretical value y/v = 1.75. The slope of the log-
log plot of ¥max(L) against L in Figure 8b, described
by (10), gives the result of y/v=1.777 at T = T.(L). It
is in agreement with the theoretical value y/v = 1.75,
and reveals that the finite-size scaling relation for x (L)
at T = T.(L) is also valid at T = TZ(L).

4. Conclusion

In this study, we obtained the fractals by using the
model of DLA for the lattice with L = 80, 120, and 160.
The fractal dimensions have been obtained for the frac-
tal clusters. The fractal dimension is consistent with
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