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B. Y. Chen inequalities for submanifolds of a Riemannian manifold
of quasi-constant curvature

Cihan Ozgiir

Abstract
In this paper, we prove B. Y. Chen inequalities for submanifolds of a Riemannian manifold of quasi-
constant curvature, i.e., relations between the mean curvature, scalar and sectional curvatures, Ricci curva-

tures and the sectional curvature of the ambient space. The equality cases are considered.
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1. Introduction

In [11], B. Y. Chen and K. Yano introduced the notion of a Riemannian manifold (M, g) of quasi-constant

curvature as a Riemannian manifold with the curvature tensor satisfying the condition
R(X,Y, Z, W) = alg(Y, Z)g(X, W) — g(X, Z)g(Y, W)] +
+b[g( X, WT(Y)T(Z) — g(X, 2)T(Y)T(W)+
g(Y, Z2)T(X)T(W) — g(Y,W)T(X)T(Z)], (1.1)
where a, b are scalar functions and T is a 1-form defined by
g9(X,P)=T(X), (1.2)

and P is a unit vector field. It can be easily seen that, if the curvature tensor R is of the form (1.1), then the
manifold is conformally flat. If b = 0 then the manifold reduces to a space of constant curvature.
A non-flat Riemannian manifold (M™,g) (n > 2) is defined to be a quasi-Einstein manifold [4] if its

Ricci tensor satisfies the condition
where a,b are scalar functions such that b # 0 and A is a non-zero 1-form such that g(X,U) = A(X) for

every vector field X and U is a unit vector field. If b = 0 then the manifold reduces to an Einstein manifold.

It can be easily seen that every Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold.
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One of the basic problems in submanifold theory is to find simple relations between the extrinsic and
intrinsic invariants of a submanifold. In [6], [7], [9] and [10], B. Y. Chen established some inequalities in this
respect. They are called B. Y. Chen inequalities.

Afterwards, many geometers studied similar problems for different submanifolds in various ambient
spaces, for example see [1]-[3], [12] and [13].

Motivated by the studies of the above authors, in the present paper, we study B. Y. Chen inequalities

for submanifolds of a Riemannian manifold of quasi-constant curvature.

2. Preliminaries

Let M be an n-dimensional submanifold of an (n + m)-dimensional Riemannian manifold N"*™. The

Gauss and Weingarten formulas are given respectively by
VxY =VxY +h(X,Y) and VxN=—-AyX+ViN

forall X,Y € TM and N € T+M , where %, V and V+ are the Riemannian, induced Riemannian and normal

connections in M , M and the normal bundle T-M of M, respectively, and A is the second fundamental form
related to the shape operator A by g (h(X,Y),N) =g (AnX,Y). The Gauss equation is given by

R(X,Y, 2, W) = R(X,Y,Z,W)—g(h(X,W),h(Y, Z)) + g (WX, 2), (Y, W)) (2.1)

forall X,Y, Z, W € TM , where R is the curvature tensor of M.

The mean curvature vector H is given by H = %trace(h). The submanifold M is totally geodesic in
N™+ if h =0, and minimal if H =0 [5].

Using (1.1), the Gauss equation for the submanifold M™ of a Riemannian manifold of quasi-constant

curvature is

R(X,Y, Z,W) = alg(Y, 2)g(X, W) — g(X, Z)g(Y; W)] +
+b [g(X, W)T(Y)T(Z) — g(X, Z)T(Y )T (W)+
9(Y; 2)T(X)T(W) — g(Y, W)T(X)T(Z)] +
+9 (R(X, W), MY, 2)) — g (M(X,Z),h(Y,WV)). (2.2)

Let # ¢ T,M™, x € M™, be a 2-plane section. Denote by K (m) the sectional curvature of M™. For

any orthonormal basis {eq, ..., e,,} of the tangent space T, M™, the scalar curvature 7 at x is defined by

@)= Y K(eiAej).

1<i<j<n
We recall the following algebraic Lemma:

Lemma 2.1 [6] Let a1, asg,...,an,b be (n+1) (n > 2) real numbers such that
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Then 2aias > b, with equality holding if and only if a1 + as = a3z = ... = ay.

Let M™ be an n-dimensional Riemannian manifold, L a k-plane section of T, M™, x € M", and X a
unit vector in L.
We choose an orthonormal basis {ei,...,ex} of L such that e; = X.

Ones define [8] the Ricci curvature (or k-Ricci curvature) of L at X by
RiCL(X) = Ko+ K13+ ... + Kqg,

where K;; denotes, as usual, the sectional curvature of the 2-plane section spanned by e;,e;. For each integer
k, 2 < k <n, the Riemannian invariant O on M™ is defined by:

Op(r) = in)f(RicL(X), x e M"”,

k—1L
where L runs over all k-plane sections in T, M™ and X runs over all unit vectors in L.

Decomposing the vector field P on M uniquely into its tangent and normal components P”T and P,

respectively, we have

P =P+ Pt (2.3)

3. Chen First Inequality
Recall that the Chen first invariant is given by
v (z) =7(x) —inf {K(7) | 7 C T,M", 2 € M",dim7 = 2},

(see for example [10]), where M™ is a Riemannian manifold, K () is the sectional curvature of M™ associated
with a 2-plane section, m C T, M™,x € M"™ and 7 is the scalar curvature at x.
Let us define
P = pr. P, (3.1)

where 7 is a 2-plane section of T, M™, x € M™.
For submanifolds of a Riemannian manifold of quasi-constant curvature we establish the following optimal
inequality, which will call Chen first inequality.

Theorem 3.1 Let M™,n > 3, be an n-dimensional submanifold of an (n 4+ m)-dimensional Riemannian

manifold of quasi-constant curvature N™*T™ . Then we have

n2 a
a0 < (0= 2) |55 1P + (4 1 (3.2

+b (= 1) | PT]* ~ 1]

503



OZGUR

where 7 is a 2-plane section of T, M™, x € M™ . The equality case of inequality (3.2) holds at a point x € M™ if
and only if there exists an orthonormal basis {e1, ea, ...,en} of Ty M™ and an orthonormal basis {ent1, .-, €ntm}

of T-M™ such that the shape operators of M™ in N™*™ at x have the forms

a 0 0 --- 0
O b 0 --- 0
Aen+1 00 K 0 ) a+b:Na
00 0 y
hiy hiy 0 - 0
his —h7; O -+ 0
A= 0 0 0 0 acicm,
0 0 0O --- 0

where we denote by hi; = g(h(ei,ej),e;), 1 <i,j<n and n+1<r<n+m.

Proof. Let x € M"™ and {ej,ea,...,e,} and {€,41, ..., €ntm} be orthonormal basis of T, M™ and T;-M",
respectively. For X =W =¢;,Y = Z =e¢;, i # j, from the equations (2.2), (2.3) and (1.2) it follows that

a+b [Q (PTaej)2 +4g (PT’ei)ﬂ = R(eiaejaejaei)+

+g(h(€ia ej)a h(eia ej)) - g(h(eia ei)a h(eja 6]')).

By summation after 1 <, 5 <mn, it follows from the previous relation that
2
27 + B> = n? | H|* = 2b(n — 1) || PT||” + (n® — n)a, (3.3)

where we denote by

n

21 =D~ g(hes e5), hleis e5).

1,j=1

One takes
n%(n —2)

P |H|? = (n% = n)a — 2b(n — 1) | PT||*. (3.4)

€ =21 —

Then, from (3.3) and (3.4) we get
2 | HIP = (= 1) (I +¢) (3.5)

Let x e M™, 7 C T, M", dimm =2, m = sp{e1,ea}. We define e, 1 = ﬁ and from the relation (3.5)

we obtain

n n+m

(Zhﬁﬂ)QZ(n*l)(Z Y (h)?+e),

i,j=1r=n-+1
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or equivalently,

Zh"“ = (n=D_(RET*+ D (hH)? (3.6)
i=1 i#]
n n+m
+ > > (hiy)*+e)
i,j=1r=n+2
By using Lemma 2.1 we have from (3.6),
n n+m
MR = Y (B > D (h (3.7)
i£] i,j=1r=n+2
Gauss equation for X = W =e¢1,Y = Z = es gives
K(r) = Rlev,ez,ezer) =atb g (PT.e1)” +9 (PT.e0) | + D [Wfih5s — (h5o)?) 2
r=n-+41
T 2 T 2 1 nt1) =
Zaer[g(P,el) +g(P,62)]+2[Zh Jrz Z
i#£] i,j=1r=n+2
n+m n+m 5 5
> bk = Y (WP =a+b[g(PToer)* + g (P e2)’] +
r=n+2 r=n+1
n n+m n+m n+m
+Zh"“ Z > (hp)P+ €+Zh - > ()=
i£] i,j=1r=n+2 r=n-+2 r=n+1
2 2 1 (Al
:a+b[g(PT,el) +g(PT,62)}+2Zh"H Z Z
i#£] r=n+21i,j>2
n+m 1
r n+1 n+1 -
+ D> (R4 h5)?+ D [kl (R3] + 5e 2
r=n-42 j>2
>a+b [9 (PT,e1)” + g (PT, 62)2} + %
which implies
K(m za+b[g(PT,e1)” +g (P e2)’] + . (3.8)

From (3.1) it follows that
2
g(PTael) +g(PT;€2
Using (3.4) we get from (3.8)

n2

K(r)>71—(n—2) 2n—1)

)’ = |1Pa?.

1P+ o+ 1|+ 6 12l = (= 1) 7
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which represents the inequality to prove.

The equality case holds at a point € M™ if and only if it achieves the equality in all the previous
inequalities and we have the equality in the Lemma.

WL =0, Vi i j>2,
hi; =0, Vi#jij>2r=n+1..n+m,
hiy + Ry =0, ¥r=n+2,..,n+m,

Wit =hpt =0, Vj>2,

Ryt + R = R = =Rt
We may chose {ej, es} such that hf5" =0 and we denote by a = hf,, b= hb, u= hi' = ... =kt
It follows that the shape operators take the desired forms. O

Corollary 3.2 Under the same assumptions as in Theorem 3.1, if P is tangent to M™, we have
Sain (@) < (n—2) [P+ (ot D] 1 =1 1]
M= 2(n—1) 2 e
If P is normal to M™, we have

Sare(0) < (1= 2) |5 LI + 0+ 1

2(n—1)

4. k-Ricci curvature

We first state a relationship between the sectional curvature of a submanifold M™ of a space of quasi-
constant curvature and the associated squared mean curvature |H H2 Using this inequality, we prove a
relationship between the k-Ricci curvature of M™ (intrinsic invariant) and the squared mean curvature ||H||?

(extrinsic invariant), as another answer of the basic problem in submanifold theory which we have mentioned

in the introduction.

Theorem 4.1 Let M™,n > 3, be an n-dimensional submanifold of an (n + m)-dimensional space of quasi-

constant curvature N™"t™ . Then we have
2T
H|? > ——
1P > s
Proof. Let x € M™ and {ej,es,...,e,} and orthonormal basis of T, M™. The relation (3.3) is equivalent
with

2b 2
—a- 2y, (@)

n? | H|? = 27 + |b]® = (n? = n)a — 2b(n — 1) | PT||*. (4.2)
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We choose an orthonormal basis {e1, ..., en, €nt1, ..., €ntm} at x such that e,41 is parallel to the mean
curvature vector H(z) and ey, ..., e, diagonalize the shape operator A., . Then the shape operators take the
forms

al 0 NN 0
0 as ... 0
Aen+1 : : .. : ) (43)
0 0 ... apn
Ae, = (h;), 4,5 =1,...,n;r=n+2,...,n+ m,trace A, = 0. (4.4)

From (4.2), we get
n+m n
n® |H|* = 2T+Za + >N (4.5)

r=n+21i,j=1

—n(n —1)a — 2b(n — 1) ||PT||2
On the other hand, since

ng:(aifaj)Q: (n—1) Za 722(11(1],

1<j 1<j

we obtain
n

n2|\H|\2:(Zaz Za +2Zala]§n2az, (4.6)
i=1 =

1<J

which implies
> al >n|H|?
=1
We have from (4.5)
n?|H|? > 27 +n | H|* = n(n — 1)a — 2b(n — 1) | P7]” (4.7)

or, equivalently,
27

>
“n(n—-1)

this proves the theorem. O

2 _ 72_b T2
1) o= 2P|

Corollary 4.2 Under the same assumptions as in Theorem 4.1, if P is tangent to M™, we have

2 2T 2b
e R
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If P is normal to M™, we have

2
|H|)? > —— —a.

n(n—1)

Using Theorem 4.1, we obtain the following;:

Theorem 4.3 Let M™,n > 3, be an n-dimensional submanifold of an (n 4+ m)-dimensional Riemannian

manifold of quasi-constant curvature N™"t™ . Then, for any integer k, 2 < k < n, and any point x € M"™, we

have
2b
IH1* () = ©xlp) —a— = || PT|". (4.8)

Proof. Let {e1,...e,} be an orthonormal basis of T,,M . Denote by L;, ;, the k-plane section spanned by

€iyy -y €y, - By the definitions, one has

1 .
T(Lzlzk) = 5 Z RZCLI'IHJ',C (ei)a

i€{i1,..in}

1
(@) = Zis > i)

n—2 1< <...<ir<n
From (4.1) and the above relations, one derives
——9%(p),

which implies (4.8). O

Corollary 4.4 Under the same assumptions as in Theorem 4.3, if P is tangent to M™, we have
2
[HI" (p) = Ok(p) —a— —.

If P is normal to M™, we have

IH| (p) > Ok(p) — a.
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