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Abstract. The Hyers-Ulam-Rassias stability of the k-th partial ternary quadratic deriva-

tions is investigated in non-Archimedean Banach ternary algebras and non-Archimedean

C∗−ternary algebras by using the fixed point theorem.

1. Introduction and Preliminaries

The stability of functional equations was started in 1940 with a problem raised
by S. M. Ulam [24], concerning group homomorphisms:

Let (G1, ∗) be a group and let (G2, ◦, d) be a metric group with the metric d(., .).
Given ϵ > 0, does there exist a δ(ϵ) > 0 such that if a function f : G1 → G2 satisfies
the inequality

d(f(x ∗ y), f(x) ◦ f(y)) < δ

for all x, y ∈ G1, then there exists a homomorphism h : G1 → G2 with
d(f(x), h(x)) < ϵ for all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are
stable, i.e., if a mapping is almost a homomorphism, then there exists a true homo-
morphism near it.

In 1941, Hyers [8] gave a first affirmative answer to the question of Ulam for
the case of approximate additive mappings under the assumption that G1 and G2
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are Banach spaces. In 1978, Th. M. Rassias [21] extended the theorem of Hyers by
considering the stability problem with unbounded Cauchy difference inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p) (ϵ ≥ 0, p ∈ [0, 1)).

Namely, he has proved the following:

Theorem 1.1.([21]) Let E1, E2 be Banach spaces. If f : E1 → E2 satisfies the
inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)

for all x, y ∈ E1, where ϵ and p are constants with ϵ ≥ 0 and 0 ≤ p < 1, then there
exists a unique additive mapping A : E1 → E2 such that

∥f(x)−A(x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ E1. If, moreover, the function t 7→ f(tx) from R into E2 is continuous
for each fixed x ∈ E1, then the mapping A is R-linear.

This result provided a remarkable generalization of the Hyers’ theorem. So this
kind of stability that was introduced by Th. M. Rassias [21] is called the Hyers-
Ulam-Rassias stability of functional equations. In 1994, Gǎvruta [7] obtained a
generalization of Rassias’ theorem by replacing the bound ϵ(∥x∥p + ∥y∥p) by a
general control function φ(x, y).

The Hyers-Ulam-Rassias stability problems of various functional equations and
mappings with more general domains and ranges have been investigated by several
mathematicians (see [13]-[17]). We also refer the readers to the books [4],[9] and
[22].

The stability result concerning derivations between operator algebras was first
obtained by Šemrl in [23]. Park and et al. proved the stability of homomorphisms
and derivations in Banach algebras, Banach ternary algebras, C∗-algebras, Lie C∗-
algebras and C∗-ternary algebras ([3],[18],[19],[20]).

We recall some basic facts concerning Banach ternary algebras and some pre-
liminary results.

Let A be a linear space over a complex field equipped with a mapping, the
so-called ternary product, [ ] : A× A× A → A with (x, y, z) 7→ [xyz] that is linear
in variables x, y, z and satisfies the associative identity, i.e. [[xyz]uv] = [x[yzu]v] =
[xy[zuv]] for all x, y, z, u, v ∈ A. The pair (A, [ ]) is called a ternary algebra. The
ternary algebra (A, [ ]) is called unital if it has an identity element, i.e. an element
e ∈ A such that [xee] = [eex] = x for every x ∈ A. A ∗-ternary algebra is a ternary
algebra together with a mapping x 7→ x∗ from A into A which satisfies

(i) (x∗)∗ = x,
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(ii) (λx)∗ = λ̄x∗,

(iii) (x+ y)∗ = x∗ + y∗,

(iv) [xyz]∗ = [z∗y∗x∗]

for all x, y, z ∈ A and all λ ∈ C. In the case that A is unital and e is its unit, we
assume that e∗ = e.

A is a normed ternary algebra if A is a ternary algebra and there exists a norm
∥.∥ on A which satisfies ∥[xyz]∥ ≤ ∥x∥∥y∥∥z∥ for all x, y, z ∈ A. If A is a unital
ternary algebra with unit element e, then ∥e∥ = 1. By a Banach ternary algebra
we mean a normed ternary algebra with a complete norm ∥.∥. If A is a ternary
algebra, x ∈ A is called central if [xyz] = [zxy] = [yzx] for all y, z ∈ A. The set of
all central elements of A is called the center of A which is denoted by Z(A).

If A is ∗-normed ternary algebra and Z(A) = 0, then we have ∥x∗∥ = ∥x∥. A
C∗-ternary algebra is a Banach ∗-ternary algebra if ∥[x∗yx]∥ = ∥x∥2∥y∥ for all x in
A and y in Z(A) .

In 2010, Eshaghi and et al. [6] introduced the concept of a partial ternary
derivation and proved the Hyers-Ulam-Rassias stability of partial ternary deriva-
tions in Banach ternary algebras. Recently, Javadian and et al. [10] established the
Hyers-Ulam-Rassias stability of the partial ternary quadratic derivations in Banach
ternary algebras by using the direct method.

Let A1, . . . , An be normed ternary algebras over the complex field C and let B
be a Banach ternary algebra over C. As in [10], a mapping δk : A1 × . . .×An → B
is called a k-th partial ternary quadratic derivation if

δk(x1, . . . , ak + bk, . . . , xn) + δk(x1, . . . , ak − bk, . . . , xn)

= 2δk(x1, . . . , ak, . . . , xn) + 2δk(x1, . . . , bk, . . . , xn)

and there exists a mapping gk : Ak → B such that

δk(x1, . . . , [akbkck], . . . , xn) = [gk(ak)gk(bk)δk(x1, . . . , ck, . . . , xn)]

+[gk(ak)δk(x1, . . . , bk, . . . , xn)gk(ck)] + [δk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]

for all ak, bk, ck ∈ Ak and all xi ∈ Ai (i ̸= k).

If, δk satisfies the additional condition

δk(x1, . . . , a
∗
k, . . . , xn) = (δk(x1, . . . , ak, . . . , xn))

∗

for all ak ∈ Ak, xi ∈ Ai (i ̸= k), then δk is called a k-th partial ternary quadratic
∗-derivation.

Let K denote a field and |.| be a function (valuation absolute) from K into
[0,∞). By a non-Archimedean valuation we mean a function |.| that satisfies the
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conditions |r| = 0 if and only if r = 0, |rs| = |r||s| and the strong triangle inequality,
namely,

|r + s| ≤ max{|r|, |s|} ≤ |r|+ |s|

for all r, s ∈ K. The associated field K is referred to as a non-Archimedean field.
Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the trivial valuation we mean
the mapping |.| taking everything except 0 into 1 and |0| = 0.

Let X be a vector space over a field K with a non-Archimedean nontrivial
valuation |.|. A function ∥.∥ : X → R is called a non-Archimedean norm if it
satisfies the following conditions:

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥rx∥ = |r|∥x∥ for all r ∈ K, x ∈ X;

(iii) ∥x+ y∥ ≤ max{∥x∥, ∥y∥} for all x, y ∈ X (strong triangle inequality).

Then, (X, ∥.∥) is called a non-Archimedean normed space.

From the fact that

∥xn − xm∥ ≤ max{∥xj+1 − xj∥ : m ≤ j ≤ n− 1} (n > m)

holds, a sequence {xn}n∈N is a Cauchy sequence if and only if {xn+1 − xn}n∈N
converges to zero in a non-Archimedean normed space. By a complete non-
Archimedean normed space, we mean one in which every Cauchy sequence is con-
vergent.

Suppose that p is a prime number. For any nonzero rational number x, there
exists a unique integer nx ∈ Z such that x = (a/b)pnx , where a and b are integers
not divisible by p. Define the p-adic absolute value |x|p := p−nx . Then |.| is a
non-Archimedean norm on Q with the p-adic absolute value |.|p. The completion
of Q with respect to |.| is denoted by Qp , which is called the p-adic number field.

By a non-Archimedean Banach ternary algebra we mean a complete non-
Archimedean vector space A equipped with a ternary product (x, y, z) 7→ [xyz]
of A3 into A which is K-linear in each variables and associative in the sense that

[xy[zwv]] = [x[yzw]v] = [[xyz]wv]

and satisfies the following
∥[xyz]∥ ≤ ∥x∥∥y∥∥z∥

for all x, y, z, w, v ∈ A. A non-Archimedean C∗-ternary algebra is a non-
Archimedean Banach ∗-ternary algebra A if ∥[x∗yx]∥ = ∥x∥2∥y∥ for all x ∈ A
and y ∈ Z(A).

We now recall a fundamental result in fixed point theory. Let X be a nonempty
set. A function d : X ×X → [0,∞] is called a non-Archimedean generalized metric
on X if and only if d satisfies
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(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ max{d(x, y), d(y, z)}

for all x, y, z ∈ X. Then (X, d) is called a non-Archimedean generalized metric
space.

Now, we need the following fixed point theorem (see [5]):

Theorem 1.2.(Non-Archimedean Alternative Contraction Principle) Let (X, d) be
a non-Archimedean generalized complete metric space and Λ : X → X is a strictly
contractive mapping, that is,

d(Λx,Λy) ≤ Ld(x, y) (x, y ∈ X)

with the Lipschitz constant L < 1. If there exists a nonnegative integer n0 such that
d(Λn0+1x,Λn0x) <∞ for some x ∈ X, then the following statements are true:

(i) The sequence {Λnx} converges to a fixed point x∗ of Λ;

(ii) x∗ is a unique fixed point of Λ in

X∗ = {y ∈ X | d(Λn0x, y) <∞};

(iii) If y ∈ X∗, then

d(y, x∗) ≤ d(Λy, y).

In this paper, using the fixed point method, we prove the Hyers-Ulam-
Rassias stability and superstability of partial ternary quadratic derivations in non-
Archimedean Banach ternary algebras and non-Archimedean C∗-ternary algebras.

2. Stability of Partial Ternary Quadratic Derivations in Non-Archimedean
Banach Ternary Algebras

Throughout this section, we assume that A1, . . . , An are non-Archimedean
ternary normed algebras over a non-Archimedean field K, and B is a non-
Archimedean Banach ternary algebra over K. We denote that 0k, 0B are zero
elements of Ak, B, respectively.

Theorem 2.1. Let Fk : A1 × . . .×An → B be a mapping with
Fk(x1, . . . , 0k, . . . , xn) = 0B. Assume that there exist a function φk : A3

k → [0,∞)
and a quadratic mapping gk : Ak → B such that

∥Fk(x1, . . . , ak + bk, . . . , xn) + Fk(x1, . . . , ak − bk, . . . , xn)(2.1)

−2Fk(x1, . . . , ak, . . . , xn)− 2Fk(x1, . . . , bk, . . . , xn)∥ ≤ φk(ak, bk, 0k)
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and

∥Fk(x1, . . . , [akbkck], . . . , xn)− [gk(ak)gk(bk)Fk(x1, . . . , ck, . . . , xn)]

−[gk(ak)Fk(x1, . . . , bk, . . . , xn)gk(ck)]− [Fk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]∥(2.2)

≤ φk(ak, bk, ck)

for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k). Suppose that there exist a natural number
t ∈ K and L ∈ (0, 1) such that

(2.3) φk(t
−1ak, t

−1bk, t
−1ck) ≤ |t|−2Lφk(ak, bk, ck)

for all ak, bk, ck ∈ Ak. Then there exists a unique k-th partial ternary quadratic
derivation δk : A1 × · · · ×An → B such that

(2.4) ∥Fk(x1, . . . , xn)− δk(x1, . . . , xn)∥ ≤ |t|−2Lψ(xk)

for all xi ∈ Ai (i = 1, 2, . . . , n), where

ψ(xk) := max{φk(0k, 0k, 0k), φk(xk, xk, 0k), φk(2xk, xk, 0k),(2.5)

. . . , φk((k − 1)xk, xk, 0k)}.

Proof. By (2.3), one can show that

(2.6) lim
m→∞

|t|2mφk(t
−mak, t

−mbk, t
−mck) = 0

for all ak, bk, ck ∈ Ak. One can use induction on m to show that

∥Fk(x1, . . . ,mxk, . . . , xn)−m2Fk(x1, . . . , xk, . . . , xn)∥(2.7)

≤ max{φk(0k, 0k, 0k), φk(xk, xk, 0k), φk(2xk, xk, 0k),

. . . , φk((m− 1)xk, xk, 0k)}

for all xi ∈ Ai (i = 1, 2, . . . , n) and all non-negative integers m. Indeed, putting
ak = bk = xk in (2.1), we get

∥Fk(x1, . . . , 2xk, . . . , xn)− 4Fk(x1, . . . , xk, . . . , xn)∥(2.8)

≤ max{φk(0k, 0k, 0k), φk(xk, xk, 0k)}

for all xi ∈ Ai, i = 1, 2, . . . , n. This proves (2.7) hold for m = 2. Let (2.7) holds
for m = 1, 2, . . . , j. Replacing ak, bk with jxk, xk, respectively, in (2.1), we obtain

∥Fk(x1, . . . , (j + 1)xk, . . . , xn) + Fk(x1, . . . , (j − 1)xk, . . . , xn)

−2Fk(x1, . . . , jxk, . . . , xn)− 2Fk(x1, . . . , xk, . . . , xn)∥
≤ max{φk(0k, 0k, 0k), φk(jxk, xk, 0k)}.(2.9)
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Since

Fk(x1, . . . , (j + 1)xk, . . . , xn) + Fk(x1, . . . , (j − 1)xk, . . . , xn)

−2Fk(x1, . . . , jxk, . . . , xn)− 2Fk(x1, . . . , xk, . . . , xn)

= Fk(x1, . . . , (j + 1)xk, . . . , xn)− (j + 1)2Fk(x1, . . . , xk, . . . , xn)

+Fk(x1, . . . , (j − 1)xk, . . . , xn)− (j − 1)2Fk(x1, . . . , xk, . . . , xn)

−2[Fk(x1, . . . , jxk, . . . , xn)− j2Fk(x1, . . . , xk, . . . , xn)](2.10)

for all xi ∈ Ai (i = 1, 2, . . . , n), it follows from induction hypothesis and (2.9) that
for all xi ∈ Ai (i = 1, 2, . . . , n),

∥Fk(x1, . . . , (j + 1)xk, . . . , xn)− (j + 1)2Fk(x1, . . . , xk, . . . , xn)∥(2.11)

≤ max{∥Fk(x1, . . . , (j + 1)xk, . . . , xn) + Fk(x1, . . . , (j − 1)xk, . . . , xn)

−2Fk(x1, . . . , jxk, . . . , xn)− 2Fk(x1, . . . , xk, . . . , xn)∥,
∥Fk(x1, . . . , (j − 1)xk, . . . , xn)− (j − 1)2Fk(x1, . . . , xk, . . . , xn)∥,
|2|∥j2Fk(x1, . . . , xk, . . . , xn)− Fk(x1, . . . , jxk, . . . , xn)∥}

≤ max{φk(0k, 0k, 0k), φk(xk, xk, 0k), φk(2xk, xk, 0k), . . . , φk(jxk, xk, 0k)}.

This proves (2.7) for all m ≥ 2. In particular, for all xi ∈ Ai (i = 1, 2, . . . , n)

(2.12) ∥Fk(x1, . . . , txk, . . . , xn)− t2Fk(x1, . . . , xk, . . . , xn)∥ ≤ ψ(xk).

Replacing xk by t−1xk in (2.12), we get

(2.13) ∥Fk(x1, . . . , xk, . . . , xn)− t2Fk(x1, . . . , t
−1xk, . . . , xn)∥ ≤ ψ(t−1xk)

for all xi ∈ Ai (i = 1, 2, . . . , n).

Let us define a set X of all functions Hk : A1 × . . .×An → B by

X = {Hk : A1 × . . .×An → B, Hk(x1, . . . , 0k, . . . , xn) = 0B ,

xi ∈ Ai, i = 1, 2, . . . , n}

and introduce ρ on X as follows:

ρ(Fk, Hk) := inf{C ∈ (0,∞) : ∥Fk(x1, . . . , xk, . . . , xn)(2.14)

−Hk(x1, . . . , xk, . . . , xn)∥ ≤ Cψ(xk), ∀xi ∈ Ai, i = 1, 2, . . . , n)}.

It is easy to see that ρ defines a generalized non-Archimedean complete metric on
X (see [1],[2] and [12]). Now we consider the function J : X → X defined by
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J(Hk)(x1, . . . , xk, . . . , xn) := t2Hk(x1, . . . , t
−1xk, . . . , xn)

for all xi ∈ Ai (i = 1, 2, . . . , n) and Hk ∈ X. Then J is strictly contractive on X,
in fact if for all xi ∈ Ai (i = 1, 2, . . . , n),

(2.15) ∥Fk(x1, . . . , xk, . . . , xn)−Hk(x1, . . . , xk, . . . , xn)∥ ≤ Cψ(xk)

then by (2.3),

∥J(Fk)(x1, . . . , xk, . . . , xn)− J(Hk)(x1, . . . , xk, . . . , xn)∥(2.16)

= |t|2∥Fk(x1, . . . , t
−1xk, . . . , xn)−Hk(x1, . . . , t

−1xk, . . . , xn)∥
≤ C|t|2ψ(t−1xk) ≤ CLψ(xk) (xk ∈ Ak).

So it follows that

(2.17) ρ(J(Fk), J(Hk)) ≤ Lρ(Fk,Hk) (Fk,Hk ∈ X).

Hence, J is a strictly contractive mapping with Lipschitz constant L. Also we obtain
by (2.13) that

∥J(Fk)(x1, . . . , xk, . . . , xn)− Fk(x1, . . . , xk, . . . , xn)∥(2.18)

= ∥t2Fk(x1, . . . , t
−1xk, . . . , xn)− Fk(x1, . . . , xk, . . . , xn)∥

≤ ψ(t−1xk) ≤ |t|−2Lψ(xk)

for all xi ∈ Ai (i = 1, 2, . . . , n). This means that ρ(J(Fk), Fk) ≤ |t|−2L <∞. Now,
from Theorem 1.2, it follows that J has a unique fixed point δk : A1× . . .×An → B
in the set

Uk = {Hk ∈ X : ρ(Hk, J(Fk)) <∞}

and for each xi ∈ Ai (i = 1, 2, . . . , n),

δk(x1, . . . , xn) := lim
m→∞

Jm(Fk(x1, . . . , xk, . . . , xn))(2.19)

= lim
m→∞

t2m(Fk(x1, . . . , t
−mxk, . . . , xn)).

Then we obtain from (2.1) and (2.6) that

∥δk(x1, . . . , ak + bk, . . . , xn) + δk(x1, . . . , ak − bk, . . . , xn)

−2δk(x1, . . . , ak, . . . , xn)− 2δk(x1, . . . , bk, . . . , xn)∥
= lim

m→∞
|t|2m∥Fk(x1, . . . , t

−m(ak + bk), . . . , xn) + Fk(x1, . . . , t
−m(ak − bk), . . . , xn)

−2Fk(x1, . . . , t
−mak, . . . , xn)− 2Fk(x1, . . . , t

−mbk, . . . , xn)∥
≤ lim

m→∞
|t|2m max{φk(0k, 0k, 0k), φk(t

−mak, t
−mbk, 0k)} = 0
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for each ak, bk ∈ Ak, xi ∈ Ai (i ̸= k). This shows that δk is partial quadratic. It
follows from Theorem 1.2 that

ρ(Fk, δk) ≤ ρ(J(Fk), Fk),

that is, δk is a partial quadratic mapping which satisfies (2.4).

Now, replacing ak, bk, ck with t−mak, t
−mbk, t

−mck, respectively, in (2.2), we
obtain

∥Fk(x1, . . . , [(t
−3m)akbkck], . . . , xn)

−[t−2mgk(ak)t
−2mgk(bk)Fk(x1, . . . , t

−mck, . . . , xn)]

−[t−2mgk(ak)Fk(x1, . . . , t
−mbk, . . . , xn)t

−2mgk(ck)]

−[Fk(x1, . . . , t
−mak, . . . , xn)t

−2mgk(bk)t
−2mgk(ck)]∥

≤ φk(t
−mak, t

−mbk, t
−mck).

Then we have

∥t6mFk(x1, . . . , t
−3m[akbkck], . . . , xn)

−t6m[t−2mgk(ak)t
−2mgk(bk)Fk(x1, . . . , t

−mck, . . . , xn)]

−t6m[t−2mgk(ak)Fk(x1, . . . , t
−mbk, . . . , xn)t

−2mgk(ck)]

−t6m[Fk(x1, . . . , t
−mak, . . . , xn)t

−2mgk(bk)t
−2mgk(ck)]∥

≤ |t|6mφk(t
−mak, t

−mbk, t
−mck)

for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k). Taking the limit as m → ∞ in above
inequality, we obtain from (2.6) that

∥ lim
m→∞

t6mFk(x1, . . . , t
−3m[akbkck], . . . , xn)

−[gk(ak)gk(bk) lim
m→∞

t2mFk(x1, . . . , t
−mck, . . . , xn)]

−[gk(ak) lim
m→∞

t2mFk(x1, . . . , t
−mbk, . . . , xn)gk(ck)]

−[ lim
m→∞

t2mFk(x1, . . . , t
−mak, . . . , xn)gk(bk)gk(ck)]∥

≤ lim
m→∞

|t|6mφk(t
−mak, t

−mbk, t
−mck) = 0

for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k). Since gk is a quadratic mapping, we have

δk(x1, . . . , [akbkck], . . . , xn) = [gk(ak)gk(bk)δk(x1, . . . , ck, . . . , xn)]

+[gk(ak)δk(x1, . . . , bk, . . . , xn)gk(ck)] + [δk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]

for all ak, bk, ck ∈ Ak and all xi ∈ Ai (i ̸= k). Thus δk : A1 × · · · × An → B is a
k-th partial ternary quadratic derivation, satisfying (2.4), as desired. 2
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In the following corollaries, Qp is the p-adic number field, where p > 2 is a
prime number.

By Theorem 2.1, we show the following Hyers-Ulam-Rassias stability of partial
ternary quadratic derivations on non-Archimedean Banach ternary algebras.

Corollary 2.2. Let A1, . . . , An be non-Archimedean ternary normed algebras over
Qp with norm ∥.∥ and (B, ∥.∥B) be a non-Archimedean Banach ternary algebra over
Qp. Suppose that Fk : A1 × · · · × An → B is a mapping and gk : Ak → B is a
quadratic mapping such that for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k),

∥Fk(x1, . . . , ak + bk, . . . , xn) + Fk(x1, . . . , ak − bk, . . . , xn)(2.20)

−2Fk(x1, . . . , ak, . . . , xn)− 2Fk(x1, . . . , bk, . . . , xn)∥B ≤ θ(∥ak∥r + ∥bk∥r)

and

∥Fk(x1, . . . , [akbkck], . . . , xn)− [gk(ak)gk(bk)Fk(x1, . . . , ck, . . . , xn)](2.21)

−[gk(ak)Fk(x1, . . . , bk, . . . , xn)gk(ck)]− [Fk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]∥B
≤ θ(∥ak∥r + ∥bk∥r + ∥ck∥r)

for some θ > 0 and r ≥ 0 with r < 2. Then there exists a unique k-th partial
ternary quadratic derivation δk : A1 × · · · ×An → B such that

∥Fk(x1, . . . , xn)− δk(x1, . . . , xn)∥B ≤ 2θpr∥xk∥r

holds for all xi ∈ Ai (i = 1, 2, . . . , n).

Proof. By (2.20), we have Fk(x1, . . . , 0k, . . . , xn) = 0B. Let

(2.22) φk(ak, bk, ck) := θ(∥ak∥r + ∥bk∥r + ∥ck∥r),

for all ak, bk, ck ∈ Ak. Then by replacing ak, bk, ck with p−1ak, p
−1bk, p

−1ck,
respectively, in (2.22), we have

φk(p
−1ak, p

−1bk, p
−1ck) = θ(∥p−1ak∥r + ∥p−1bk∥r + ∥p−1ck∥r)

= θ(|p−1|r∥ak∥r + |p−1|r∥bk∥r + |p−1|r∥ck∥r)
= θpr(∥ak∥r + ∥bk∥r + ∥ck∥r)
= prφk(ak, bk, ck)

for all ak, bk, ck ∈ Ak, since |p−1| = p by the definition of the p-adic absolute value.
Also,

ψ(xk) := max{φk(0k, 0k, 0k), φk(xk, xk, 0k), φk(2xk, xk, 0k),

. . . , φk((p− 1)xk, xk, 0k)} = 2θ∥xk∥r

for all xk ∈ Ak.
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In Theorem 2.1, by putting L := pr−2 < 1, we obtain the conclusion of the
theorem. 2

Similarly, we can obtain the following theorem. So, we will omit the proof.

Theorem 2.3. Let Fk : A1 × . . .×An → B be a mapping with
Fk(x1, . . . , 0k, . . . , xn) = 0B. Assume that there exist a function φk : A3

k → [0,∞)
and a quadratic mapping gk : Ak → B such that

∥Fk(x1, . . . , ak + bk, . . . , xn) + Fk(x1, . . . , ak − bk, . . . , xn)(2.23)

−2Fk(x1, . . . , ak, . . . , xn)− 2Fk(x1, . . . , bk, . . . , xn)∥ ≤ φk(ak, bk, 0k)

and

∥Fk(x1, . . . , [akbkck], . . . , xn)− [gk(ak)gk(bk)Fk(x1, . . . , ck, . . . , xn)](2.24)

−[gk(ak)Fk(x1, . . . , bk, . . . , xn)gk(ck)]− [Fk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]∥
≤ φk(ak, bk, ck)

for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k). If there exist a natural number t ∈ K and
0 < L < 1 such that

(2.25) φk(tak, tbk, tck) ≤ |t|2Lφk(ak, bk, ck)

for all ak, bk, ck ∈ Ak, then there exists a unique k-th partial ternary quadratic
derivation δk : A1 × · · · ×An → B such that

(2.26) ∥Fk(x1, . . . , xn)− δk(x1, . . . , xn)∥ ≤ |t|2Lψ(xk)

for all xi ∈ Ai (i = 1, 2, . . . , n), where

ψ(xk) := max{φk(0k, 0k, 0k), φk(xk, xk, 0k), φk(2xk, xk, 0k),(2.27)

. . . , φk((k − 1)xk, xk, 0k)}.

The following corollary is similar to Corollary 2.2 for the case where r > 2.

Corollary 2.4. Let A1, . . . , An be non-Archimedean ternary normed algebras over
Qp with norm ∥.∥ and (B, ∥.∥B) be a non-Archimedean Banach ternary algebra over
Qp. Suppose that Fk : A1 × · · · × An → B is a mapping and gk : Ak → B is a
quadratic mapping such that for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k),

∥Fk(x1, . . . , ak + bk, . . . , xn) + Fk(x1, . . . , ak − bk, . . . , xn)(2.28)

−2Fk(x1, . . . , ak, . . . , xn)− 2Fk(x1, . . . , bk, . . . , xn)∥B ≤ θ(∥ak∥r + ∥bk∥r)

and

∥Fk(x1, . . . , [akbkck], . . . , xn)− [gk(ak)gk(bk)Fk(x1, . . . , ck, . . . , xn)](2.29)

−[gk(ak)Fk(x1, . . . , bk, . . . , xn)gk(ck)]− [Fk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]∥B
≤ θ(∥ak∥r + ∥bk∥r + ∥ck∥r)
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for some θ > 0 and r ≥ 0 with r > 2. Then there exists a unique k-th partial
ternary quadratic derivation δk : A1 × · · · ×An → B such that

∥Fk(x1, . . . , xn)− δk(x1, . . . , xn)∥B ≤ 2θp−r∥xk∥r

holds for all xi ∈ Ai (i = 1, 2, . . . , n).

Proof. From (2.28), we have Fk(x1, . . . , 0k, . . . , xn) = 0B. By putting φk(ak, bk, ck) :=
θ(∥ak∥r + ∥bk∥r + ∥ck∥r) and L := p2−r < 1 in Theorem 2.3, we get the desired
result. 2

Moreover, we have the following result for the superstability of k-th partial
ternary quadratic derivations.

Corollary 2.5. Let r, s, t and θ be real numbers such that r + s + t < −2 and
θ ∈ (0,∞). Let A1, . . . , An be non-Archimedean ternary normed algebras over Qp

with norm ∥.∥ and (B, ∥.∥B) be a non-Archimedean Banach ternary algebra over
Qp. Assume that Fk : A1 × · · · × An → B is a mapping and gk : Ak → B is a
quadratic mapping such that

∥Fk(x1, . . . , ak + bk, . . . , xn) + Fk(x1, . . . , ak − bk, . . . , xn)

−2Fk(x1, . . . , ak, . . . , xn)− 2Fk(x1, . . . , bk, . . . , xn)∥B ≤ θ(∥ak∥r + ∥bk∥r),

and

∥Fk(x1, . . . , [akbkck], . . . , xn)− [gk(ak)gk(bk)Fk(x1, . . . , ck, . . . , xn)]

−[gk(ak)Fk(x1, . . . , bk, . . . , xn)gk(ck)]− [Fk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]∥B
≤ θ(∥ak∥r∥bk∥s∥ck∥t)

for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k). Then Fk is a k-th partial ternary quadratic
derivation.

Proof. It follows from Theorem 2.1, by putting

φk(ak, bk, ck) := θ(∥ak∥r∥bk∥s∥ck∥t)

for all ak, bk, ck ∈ Ak. 2

We can prove a same result with condition r+ s+ t > −2 by using of Theorem
2.3.

3. Stability of Partial Ternary Quadratic ∗-Derivations in Non-Archimedean
C∗-Ternary Algebras

In this section, assume that A1, . . . , An are non-Archimedean ∗-normed ternary
algebras over C, and B is a non-Archimedean C∗-ternary algebra.
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Theorem 3.1. Let Fk : A1 × · · · ×An → B be a mapping with
Fk(x1, . . . , 0k, . . . , xn) = 0B. Suppose that there exist a function φk : A3

k → [0,∞)
and a quadratic mapping gk : Ak → B such that (2.1) and (2.2) hold and

(3.1) ∥Fk(x1, . . . , a
∗
k, . . . , xn)− (Fk(x1, . . . , ak, . . . , xn))

∗∥ ≤ φk(ak, 0k, 0k)

for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k). If there exist a natural number t ∈ K and
0 < L < 1 and (2.3) holds, then there exists a unique k-th partial ternary quadratic
∗-derivation δk : A1 × · · · ×An → B such that (2.4) holds.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
k-th partial ternary quadratic derivation δk : A1 × · · · × An → B satisfying (2.4),
given by

(3.2) δk(x1, . . . , xn) := lim
m→∞

t2m(Fk(x1, . . . , t
−mxk, . . . , xn))

for all xi ∈ Ai (i = 1, 2, . . . , n). Now, we have to show that δk is ∗-preserving. So
it follows from (3.2) that

∥δk(x1, . . . , a∗k, . . . , xn)− (δk(x1, . . . , ak, . . . , xn))
∗∥

= lim
m→∞

|t|2m∥Fk(x1, . . . , t
−ma∗k, . . . , xn)− (Fk(x1, . . . , t

−mak, . . . , xn))
∗∥

= lim
m→∞

|t|2m∥Fk(x1, . . . , (t
−mak)

∗, . . . , xn)− (Fk(x1, . . . , t
−mak, . . . , xn))

∗∥

≤ lim
m→∞

|t|2m max{φk(0k, 0k, 0k), φk(t
−mak, 0k, 0k)} = 0

for each ak ∈ Ak, xi ∈ Ai (i ̸= k).

Thus δk : A1 × · · · × An → B is a k-th partial ternary quadratic ∗-derivation
satisfying (2.4), as desired. 2

Now, we prove the following Hyers-Ulam-Rassias stability problem for k-th par-
tial ternary quadratic ∗-derivations on non-Archimedean C∗-ternary algebras.

Corollary 3.2. Let A1, . . . , An be non-Archimedean ∗-normed ternary algebras
over Qp with norm ∥.∥ and (B, ∥.∥B) be a non-Archimedean C∗-ternary algebra
over Qp. Suppose that Fk : A1 × · · · ×An → B is a mapping and gk : Ak → B is a
quadratic mapping such that for all ak, bk, ck ∈ Ak, xi ∈ Ai (i ̸= k),

∥Fk(x1, . . . , ak + bk, . . . , xn) + Fk(x1, . . . , ak − bk, . . . , xn)(3.3)

−2Fk(x1, . . . , ak, . . . , xn)− 2Fk(x1, . . . , bk, . . . , xn)∥B ≤ θ(∥ak∥r + ∥bk∥r),

∥Fk(x1, . . . , [akbkck], . . . , xn)− [gk(ak)gk(bk)Fk(x1, . . . , ck, . . . , xn)](3.4)

−[gk(ak)Fk(x1, . . . , bk, . . . , xn)gk(ck)]− [Fk(x1, . . . , ak, . . . , xn)gk(bk)gk(ck)]∥B
≤ θ(∥ak∥r + ∥bk∥r + ∥ck∥r)
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and

∥Fk(x1, . . . , a
∗
k, . . . , xn)− (Fk(x1, . . . , ak, . . . , xn))

∗∥B ≤ θ∥ak∥r(3.5)

for some θ > 0 and r ≥ 0 with r < 2. Then there exists a unique k-th partial
ternary quadratic ∗-derivation δk : A1 × · · · ×An → B such that

∥Fk(x1, . . . , xn)− δk(x1, . . . , xn)∥B ≤ 2θpr∥xk∥r

holds for all xi ∈ Ai (i = 1, 2, . . . , n).

Proof. The proof follows from Theorem 3.1, by taking φk(ak, bk, ck) := θ(∥ak∥r +
∥bk∥r + ∥ck∥r) for all ak, bk, ck ∈ Ak and L = pr−2, we get the desired result. 2

Moreover, we can prove a same result with condition r > 2.
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