Houston Journal of Mathematics c 2007 University of Houston Volume 33, No. 1, 2007

POWER SUBGROUPS OF SOME HECKE GROUPS II

I. N. CANGUL, R. SAHIN, S. IKIKARDES, AND Ö. KORUOĞLU

Communicated by Jutta Hausen

ABSTRACT. Let $q \geq 3$ be an odd integer and let $H(\lambda_q)$ be the Hecke group associated to *q*. Let *m* be a positive integer and $H^m(\lambda_q)$ be the m-th power subgroup of $H(\lambda_q)$. In this work, the power subgroups $H^m(\lambda_q)$ are discussed. The Reidemeister-Schreier method and the permutation method are used to obtain the abstract group structure and generators of $H^m(\lambda_q)$; their signatures are then also determined. A similar result on the Hecke groups *H*(λ ^{*q*}), *q* prime, which says that $H'(\lambda_q) \cong H^2(\lambda_q) \cap H^q(\lambda_q)$, is generalized to Hecke groups $H(\lambda_q)$ with $q \geq 3$ odd integer.

1. INTRODUCTION

In [6], Erich Hecke introduced the groups $H(\lambda)$ generated by two linear fractional transformations

$$
T(z) = -\frac{1}{z}
$$
 and $U(z) = z + \lambda$,

where λ is a fixed positive real number. Let $S = TU$, i.e.

$$
S(z) = -\frac{1}{z + \lambda}.
$$

P SL(2,R) denotes the group of orientation preserving isometries of the upper half plane. A Fuchsian group is a finitely generated discrete subgroup of $PSL(2,\mathbb{R})$. It is well known that every Fuchsian group has a presentation of the following type:

²⁰⁰⁰ *Mathematics Subject Classification.* 20H10, 11F06.

Key words and phrases. Hecke groups, power subgroup, commutator subgroup.

This work was supported by The Research Fund of Uludag University, project no:F-2004/40.

³³

Generators
\n
$$
a_1, b_1, ..., a_g, b_g
$$
 (hyperbolic)
\n
$$
x_1, ..., x_r
$$
 (elliptic)
\n
$$
p_1, ..., p_t
$$
 (parabolic)
\n
$$
h_1, ..., h_u
$$
 (hyperbolic boundary)
\nRelations
\n
$$
x_j^{m_j} = \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^r x_j \prod_{k=1}^t p_k \prod_{l=1}^u h_l = 1
$$

where $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$ is the commutator of a_i and b_i . We then say that the group has signature $(g; m_1, \ldots, m_r; t; u)$. Here g is the genus of the Riemann surface corresponding to the group and m_i are the integers greater than 1, called the periods of the group. Most Fuchsian groups including Hecke groups have no hyperbolic boundary elements, therefore we take $u = 0$, and omit it in the signatures.

E. Hecke showed that H(λ) is Fuchsian if and only if $\lambda = \lambda_q = 2 \cos \frac{\pi}{q}$, for $q = 3, 4, 5, \ldots$, or $\lambda \geq 2$. We are going to be interested in the former case. These groups have come to be known as the *Hecke groups,* and we will denote them by $H(\lambda_q)$, for $q \geq 3$. Then the Hecke group $H(\lambda_q)$ is the discrete group generated by *T* and *S*, and it is isomorphic to the free product of two finite cyclic groups of orders 2 and *q*. $H(\lambda_q)$ has a presentation

(1.1)
$$
H(\lambda_q) = \langle T, S | T^2 = S^q = I \rangle \cong C_2 * C_q, [3].
$$

Note that the Hecke groups $H(\lambda_q)$ can be thought of as triangle groups having an infinity as one of the entries. Coxeter and Moser [4] have shown that the triangle group $(g; k, l, m)$ is finite when $(1/k + 1/l + 1/m) > 1$ and infinite when $(1/k + 1/l)$ $1/l + 1/m$ \leq 1. Also $H(\lambda_q)$ has the signature $(0; 2, q, \infty)$, that is they are infinite triangle groups. The first several of these groups are $H(\lambda_3) = \Gamma = PSL(2, \mathbb{Z})$ (the modular group), $H(\lambda_4) = H(\sqrt{2})$, $H(\lambda_5) = H(\frac{1+\sqrt{5}}{2})$, and $H(\lambda_6) = H(\sqrt{3})$.

Hecke groups $H(\lambda_q)$ and their normal subgroups have been extensively studied for many aspects in the literature, [1], [7], [11]. The Hecke group $H(\lambda_3)$, the modular group $PSL(2, \mathbb{Z})$, and its normal subgroups have especially been of great interest in many fields of Mathematics, for example number theory, automorphic function theory and group theory [8], [10].

Let *m* be a positive integer. Let us define $H^m(\lambda_q)$ to be the subgroup generated by the *m*th powers of all elements of $H(\lambda_q)$. The subgroup $H^m(\lambda_q)$ is called the *m*-*th power subgroup* of $H(\lambda_q)$. As fully invariant subgroups, they are normal in $H(\lambda_q)$.

From the definition one can easily deduce that

$$
(1.2) \t\t\t H^m(\lambda_q) > H^{mk}(\lambda_q)
$$

and that

$$
(H^m(\lambda_q))^k > H^{mk}(\lambda_q).
$$

Using the last two inequalities imply that

$$
H^m(\lambda_q).H^k(\lambda_q) = H^{(m,k)}(\lambda_q)
$$

where (*m, k*) denotes the greatest common divisor of *m* and *k.*

The power subgroups of the modular group $H(\lambda_3)$ have been studied and classified in [8], [9] by Newman. In [8], Newman showed that

$$
H'(\lambda_3) = H^2(\lambda_3) \cap H^3(\lambda_3)
$$

where $H'(\lambda_3)$ is called *the commutator subgroup* of the modular group $H(\lambda_3)$. In fact, it is a well-known [9] and important result that the only normal subgroups of $H(\lambda_3)$ with torsion are $H(\lambda_3)$, $H^2(\lambda_3)$ and $H^3(\lambda_3)$ of indices 1, 2, 3 respectively. These results have been generalized to Hecke groups $H(\lambda_q)$, *q* prime, by Cangül and Singerman in [3]. They proved that

$$
H'(\lambda_q) = H^2(\lambda_q) \cap H^q(\lambda_q)
$$
 (also see [2])

and if *q* is prime then the only normal subgroups of $H(\lambda_q)$ with torsion are $H(\lambda_q)$, $H^2(\lambda_q)$ and $H^q(\lambda_q)$ of indices 1, 2, *q*, respectively.

The power subgroups of the Hecke groups $H(\lambda_q)$, $q \geq 4$ even integer, were investigated by Ikikardes, Koruoğlu and Sahin in $[5]$. Also in $[11]$, $[12]$, $[13]$ and [14], Schmidt and Sheingorn used the results related to the power subgroups of some Hecke groups $H(\lambda_a)$.

In this work we compute the group structure of certain Fuchsian groups, the power subgroups of the odd-indexed subfamily of the Hecke triangle groups. We achieve this by applying standard techniques of combinatorial group theory (The Reidemeister-Schreier method and the permutation method). Also we give the signatures of $H^m(\lambda_q)$, of finite index, as all of them are not necessarily of finite index, and we proved that for $q \geq 3$ odd integer,

$$
H'(\lambda_q) = H^2(\lambda_q) \cap H^q(\lambda_q).
$$

Finally we have made corrections to the findings by Sheingorn in [14].

2. STRUCTURE OF POWER SUBGROUPS OF $H(\lambda_q)$

Now we consider the presentation of the Hecke group $H(\lambda_q)$ given in (1.1):

$$
H(\lambda_q) = \langle T, S | T^2 = S^q = I \rangle.
$$

Firstly we find a presentation for the quotient $H(\lambda_q)/H^m(\lambda_q)$ by adding the relation $X^m = I$ for all $X \in H(\lambda_q)$ to the presentation of $H(\lambda_q)$. The order of $H(\lambda_q)/H^m(\lambda_q)$ gives us the index which is finite by our choice. We have

$$
(2.1) \quad H(\lambda_q)/H^m(\lambda_q) \cong .
$$

Thus we use the Reidemeister-Schreier process to find the presentation of the power subgroups $H^m(\lambda_q)$, $q \geq 3$ odd integer. The idea is as follows: We first choose (not uniquely) a Schreier transversal Σ for $H^m(\lambda_q)$. (This method, in general, applies to all normal subgroups of finite index). Σ consists of certain words in *T* and *S*. Then we take all possible products in the following order:

(An element of Σ) × (A generator of $H(\lambda_q)$)

×(coset representative of the preceding product)*[−]*¹

We now discuss the group theoretical structure of these subgroups. First we begin with the case $m = 2$:

Theorem 2.1. Let $q \geq 3$ be an odd integer. The normal subgroup $H^2(\lambda_q)$ is the *free product of two finite cyclic groups of order q. Also*

$$
\begin{aligned} & H(\lambda_q)/H^2(\lambda_q) \cong C_2, \\ & H(\lambda_q) = H^2(\lambda_q) \cup T \ H^2(\lambda_q) \end{aligned}
$$

and

$$
H^2(\lambda_q) = ~~\star .~~
$$

The elements of $H^2(\lambda_q)$ *can be characterized by the requirement that the sum of the exponents of T are even.*

PROOF. By (2.1) , we have

$$
H(\lambda_q)/H^2(\lambda_q) \cong \langle T, S | T^2 = S^q = T^2 = S^2 = (TS)^2 = \dots = I \rangle.
$$

Thus we use the Reidemeister-Schreier process to find the presentation of the power subgroups $H^2(\lambda_q)$. We have

$$
H(\lambda_q)/H^2(\lambda_q) \cong \langle T | T^2 = I \rangle,
$$

since $S^2 = S^q = I$ and $(m, q) = 1$. Thus we get

$$
H(\lambda_q)/H^2(\lambda_q) \cong C_2,
$$

and

$$
\left|H(\lambda_q):H^2(\lambda_q)\right|=2.
$$

Now we choose *I, T.* Hence, all possible products are

$$
I.T.(T)^{-1} = I \quad I.S.(I)^{-1} = S
$$

$$
T.T.(I)^{-1} = I \quad T.S.(T)^{-1} = TST^{-1}
$$

Since $T^{-1} = T$, the generators of $H^2(\lambda_q)$ are *S*, *TST*. Thus $H^2(\lambda_q)$ has a presentation

$$
H^2(\lambda_q) = ~~\star~~
$$

and we get

$$
H(\lambda_q) = H^2(\lambda_q) \cup TH^2(\lambda_q).
$$

Let us now we use the permutation method (see [15]) to find the signature of $H^2(\lambda_q)$. We consider the homomorphism

$$
H(\lambda_q) \to H(\lambda_q)/H^2(\lambda_q) \cong C_2.
$$

Here *T* is mapped to an element of order two and *S* is mapped to the identity. Hence *T S* is mapped to an element of order two. Then they have the following permutation representations :

$$
T \rightarrow (1\ 2),
$$

\n
$$
S \rightarrow (1)\ (2),
$$

\n
$$
TS \rightarrow (1\ 2).
$$

Therefore the signature of $H^2(\lambda_q)$ is $(g; q, q, \infty) = (g; q^{(2)}, \infty)$. Now by the Riemann-Hurwitz formula, $g = 0$. Thus we obtain $H^2(\lambda_q) = (0; q^{(2)}, \infty)$.

Notice that this result coincides with the group $H^2(\lambda_q)$ given in [14] for the Hecke groups $H(\lambda_q)$. The formula for the signature of $H^2(\lambda_q)$ in [14] is not correct, in general, because the signature of $H^2(\lambda_q)$ is $(0; (q/2)^{(2)}, \infty^{(2)})$ only when q even (see [5]).

Now we have generally the following result:

Corollary 1. Let $q \geq 3$ an odd integer and let m be a positive integer such that $(m, 2) = 2$ *and* $(m, q) = 1$ *. The normal subgroup* $H^m(\lambda_q)$ *is isomorphic to the normal subgroup* $H^2(\lambda_q)$ *, i.e.,*

$$
H^m(\lambda_q) \cong H^2(\lambda_q).
$$

Theorem 2.2. Let $q \geq 3$ an odd integer. The normal subgroup $H^q(\lambda_q)$ is the *free product of q finite cyclic groups of order* 2*. Also*

$$
H(\lambda_q)/H^q(\lambda_q) \cong C_q,
$$

\n
$$
H(\lambda_q) = H^q(\lambda_q) \cup S \ H^q(\lambda_q) \cup S^2 \ H^q(\lambda_q) \cup \cdots \cup S^{q-1} \ H^q(\lambda_q),
$$

and

$$
H^{q}(\lambda_{q}) = \langle T > \star \langle STS^{-1} \rangle \star \langle S^{2}TS^{-2} \rangle \star \cdots \star \langle S^{q-1}TS \rangle.
$$

The elements of $H^q(\lambda_q)$ *can be characterized by the requirement that the sum of the exponents of S are even.*

PROOF. By (2.1) , we obtain

$$
H(\lambda_q)/H^q(\lambda_q) \cong < S \mid S^q = I \geq \cong C_q,
$$

from the relations $T^2 = T^q = I$ and as $(2, q) = 1$. Thus

$$
|H(\lambda_q):H^q(\lambda_q)|=q.
$$

Therefore we choose $\{I, S, S^2, ..., S^{q-1}\}\$ as a Schreier transversal for $H^q(\lambda_q)$. According to the Reidemeister-Schreier method, we can form all possible products:

$$
I.T.(I)^{-1} = T, \t I.S.(S)^{-1} = I,
$$

\n
$$
S.T.(S)^{-1} = STS^{-1}, \t S.S.(S^{2})^{-1} = I,
$$

\n
$$
S^{2}.T.(S^{2})^{-1} = S^{2}TS^{-2}, \t S^{2}.S.(S^{3})^{-1} = I,
$$

\n
$$
\vdots \t S^{q-1}.T.(S^{q-1})^{-1} = S^{q-1}TS, \t S^{q-1}.S.(S^{q})^{-1} = I.
$$

The generators are *T*, STS^{-1} , S^2TS^{-2} , ..., $S^{q-1}TS$. Thus $H^q(\lambda_q)$ has a presentation

$$
H^{q}(\lambda_{q}) = \langle T > \star \langle STS^{-1} \rangle \star \langle S^{2}TS^{-2} \rangle \star \cdots \star \langle S^{q-1}TS \rangle.
$$

Now consider the homomorphism

$$
H(\lambda_q) \to H(\lambda_q)/H^q(\lambda_q) \cong C_q.
$$

Here *T* is mapped to the identity and *S* is mapped to an element of order *q.* Hence *T S* is mapped to an element of order *q* as well. Then they have the following permutation representations :

$$
T \rightarrow (1) (2) \dots (q)
$$

\n
$$
S \rightarrow (1 \ 2 \dots q)
$$

\n
$$
TS \rightarrow (1 \ 2 \dots q)
$$

Therefore $H^q(\lambda_q)$ has the signature $(0; 2^{(q)}, \infty)$ similarly to the previous cases. \Box

Notice that this result coincides with the group Γ_q given in [12] for the Hecke groups $H(\lambda_q)$. In [12], *q* must be odd integer \geq 3, otherwise Γ_q has not the signature $(0; 2^{(q)}, \infty)$. Therefore Γ_q is not the analog of Γ^3 .

Theorem 2.3. *Let* $q \geq 3$ *an odd integer and let m be a positive integer such that* $(m, 2) = 1$ *and* $(m, q) = d$ *. The normal subgroup* $H^q(\lambda_q)$ *is the free product of d finite cyclic groups of order two and the finite cyclic group of order q/d. Also*

$$
\begin{aligned} &H(\lambda_q)/H^m(\lambda_q)\cong C_d,\\ &H(\lambda_q)=H^m(\lambda_q)\cup SH^m(\lambda_q)\cup S^2H^m(\lambda_q)\cup\ldots\cup S^{d-1}H^m(\lambda_q), \end{aligned}
$$

and

 $H^m(\lambda_q)= \star < STS^{q-1}> \star < S^2TS^{q-2}> \star ... \star < S^{d-1}TS^{q-d+1}> \star < S^d> .$

PROOF. If $(m, 2) = 1$ and $(m, q) = d$, then by (2.1) , we find

$$
H(\lambda_q)/H^m(\lambda_q) \cong < S \mid S^d = I \geq \cong C_d
$$

from the relations $T^2 = T^m = I$ and $S^q = S^m = I$. Thus

$$
|H(\lambda_q):H^m(\lambda_q)|=d.
$$

Therefore we choose $\{I, S, S^2, \ldots, S^{d-1}\}$ as a Schreier transversal for $H^m(\lambda_q)$. According to the Reidemeister-Schreier method, we can form all possible products:

$$
I.T.(I)^{-1} = T,
$$

\n
$$
S.T.(S)^{-1} = STS^{q-1},
$$

\n
$$
S.S.(S^{2})^{-1} = I,
$$

\n
$$
S^{2}.T.(S^{2})^{-1} = S^{2}TS^{q-2},
$$

\n
$$
\vdots
$$

\n
$$
S^{d-1}.T.(S^{d-1})^{-1} = S^{d-1}TS^{q-d+1},
$$

\n
$$
S^{d-1}.S.(I)^{-1} = S^{d}
$$

The generators are T, S^d , STS^{q-1} , S^2TS^{q-2} , ..., $S^{d-1}TS^{q-d+1}$. Thus $H^m(\lambda_q)$ has a presentation

$$
H^m(\lambda_q) = \langle T \rangle \star \langle STS^{q-1} \rangle \star \langle S^2TS^{q-2} \rangle \star ... \star \langle S^{d-1}TS^{q-d+1} \rangle \star \langle S^d \rangle
$$

and we get

$$
H(\lambda_q) = H^m(\lambda_q) \cup SH^m(\lambda_q) \cup S^2 H^m(\lambda_q) \cup ... \cup S^{d-1} H^m(\lambda_q).
$$

Now we consider the homomorphism

$$
H(\lambda_q) \to H(\lambda_q)/H^m(\lambda_q) \cong C_d.
$$

.

Here *T* is mapped to the identity and *S* is mapped to an element of order *d.* Hence *T S* is mapped to an element of order *d* as well. Then they have the following permutation representations :

$$
T \rightarrow (1) (2) \dots (d)
$$

\n
$$
S \rightarrow (1 \ 2 \dots d)
$$

\n
$$
TS \rightarrow (1 \ 2 \dots d)
$$

Therefore the group $H^m(\lambda_q)$ has the signature $(0; 2^{(d)}, q/d, \infty)$.

Corollary 2. Let $q \geq 3$ be an odd integer and let m be a positive odd integer *such that* $(m, q) = 1$ *. Then*

$$
H^m(\lambda_q) = H(\lambda_q).
$$

Now we are only left to consider the case where $(m, 2) = 2$ and $(m, q) = d > 2$. Then in $H(\lambda_q)/H^m(\lambda_q)$ we have the relations $t^2 = s^d = (ts)^m$, where *t*, *s* and *ts* are the images of *T*, *S*, and *TS*, respectively, under the homomorphism of $H(\lambda_q)$ to $H(\lambda_q)/H^m(\lambda_q)$. Then the order of the factor group is unknown. Therefore the above techniques do not say much about $H^m(\lambda_q)$ in this case apart from the fact they are all normal subgroups with torsion.

We also require the structure of the commutator subgroup $H'(\lambda_q)$ of $H(\lambda_q)$. This is well known (see [2], [11]), and we have

Lemma 1. The commutator subgroup $H'(\lambda_q)$ of $H(\lambda_q)$ is isomorphic to a free *group of rank q −* 1*. Also*

$$
|H(\lambda_q): H'(\lambda_q)| = 2q,
$$

\n
$$
H(\lambda_q) = H'(\lambda_q) \cup T \ H'(\lambda_q) \cup S \ H'(\lambda_q) \cup ...
$$

\n
$$
\cup S^{q-1} \ H'(\lambda_q) \cup TS \ H'(\lambda_q) \cup ... \cup TS^{q-1} \ H'(\lambda_q)
$$

\nand
$$
H'(\lambda_q) = \langle STS^{q-1}T \rangle \star \langle S^2TS^{q-2}T \rangle \star ... \star \langle S^{q-1}TST \rangle.
$$

Let

$$
a_1 = STS^{q-1}T
$$
, $a_2 = S^2TS^{q-2}T$,..., $a_{q-1} = S^{q-1}TST$.

Note that since *q* is odd the quotient groups $H(\lambda_q)/H^2(\lambda_q)$ and $H(\lambda_q)/H^q(\lambda_q)$ are cyclic and therefore abelian so that

$$
H^{2}(\lambda_{q}) > H'(\lambda_{q}), H^{q}(\lambda_{q}) > H'(\lambda_{q}).
$$

Hence

$$
H^2(\lambda_q) \cap H^q(\lambda_q) > H'(\lambda_q).
$$

Since $H^2(\lambda_q)$ and $H^q(\lambda_q)$ are normal subgroups of $H(\lambda_q)$, we have, by one of the isomorphism theorems, that

$$
H^2(\lambda_q) \cdot H^q(\lambda_q) / H^q(\lambda_q) \cong H^2(\lambda_q) / (H^2(\lambda_q) \cap H^q(\lambda_q)).
$$

As $H^2(\lambda_q) \cdot H^q(\lambda_q) \cong H(\lambda_q)$, we have

$$
\left|H^2(\lambda_q): \left(H^2(\lambda_q) \cap H^q(\lambda_q)\right)\right|=q.
$$

Then

$$
\left|H(\lambda_q): \left(H^2(\lambda_q) \cap H^q(\lambda_q)\right)\right| = 2q.
$$

Now we have

$$
H(\lambda_q) > H^2(\lambda_q) \cap H^q(\lambda_q) > H'(\lambda_q)
$$

and

$$
|H(\lambda_q):H'(\lambda_q)| = |H(\lambda_q): (H^2(\lambda_q) \cap H^q(\lambda_q))| = 2q.
$$

These together imply the following result:

Theorem 2.4. *The commutator subgroup* $H'(\lambda_q)$ *of* $H(\lambda_q)$ *satisfies*

(2.2)
$$
H'(\lambda_q) = H^2(\lambda_q) \cap H^q(\lambda_q).
$$

By means of this result, we are going to be able to investigate the subgroups $H^{2qm}(\lambda_q)$. As $H^2(\lambda_q) > H^{2q}(\lambda_q)$ and $H^q(\lambda_q) > H^{2q}(\lambda_q)$, (2.2) implies that

$$
H'(\lambda_q) > H^{2q}(\lambda_q).
$$

As $H'(\lambda_q)$ is a free group, we can conclude that $H^{2q}(\lambda_q)$ is also a free group. Moreover (1.2) implies that

$$
H^{2q}(\lambda_q) > H^{2qm}(\lambda_q)
$$

for $m \in \mathbb{N}$. Therefore we have

Theorem 2.5. *The subgroups* $H^{2qm}(\lambda_q)$ *are free.*

REFERENCES

- [1] i .N. Cangül, *Normal subgroups of Hecke groups*. Ph.D. Thesis: Southampton University, 1993.
- [2] İ.N. Cangül and O. Bizim, *Commutator subgroups of Hecke groups*, Bull. Inst. Math. Acad. Sinica 30 (2002), no. 4, 253–259.
- [3] İ.N. Cangül and D. Singerman, *Normal subgroups of Hecke groups and regular maps*, Math. Proc. Camb. Phil. Soc. (1998), 123, 59.
- [4] H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, (Springer-Verlag, Berlin, 1965).
- [5] S. İkikardes, Ö. Koruoğlu and R. Sahin, *Power subgroups of some Hecke groups*, Rocky Mt. J. Math., 36 (2006), no. 2, 497–508.
- [6] E. Hecke, *Über die Bestimmung Dirichletischer Reihen durch ihre Funktionalgleichungen*, Math. Ann., 112 (1936), 664-699.
- [7] M.L. Lang, C.H. Lim and S.P. Tan, *Principal congruence subgroups of the Hecke groups*, Journal of Number Theory 85 (2000), 220-230.
- [8] M. Newman,*The Structure of some subgroups of the modular group*, Illinois J. Math. 8 (1962), 480-487.
- [9] M. Newman, *Free subgroups and normal subgroups of the modular Group,* Illinois J. Math. 6 (1964), 262-265.
- [10] M. Newman, *Classification of Normal subgroups of the modular group*, Trans. A.M.S., 126 (1967), 267-277.
- [11] T.A. Schmidt and M. Sheingorn, *Covering the Hecke triangle surfaces*. Ramanujan J. 1 (1997), 155–163.
- [12] T.A. Schmidt and M. Sheingorn, *Parametrizing simple closed geodesy on* Γ ³*\H,* J. Aust. Math. Soc. 74 (2003), 43-60.
- [13] M. Sheingorn, *Low height Hecke triangle group geodesics*, in A Tribute to Emil Grosswald: Number theory and related analysis, Contemp. Math. 143, Amer. Math. Soc., Providence, RI, 1993, 545-560.
- [14] M. Sheingorn, *Geodesics on Riemann surfaces with ramification points of order greater than two*, New York J. Math. 7 (2001), 189-199.
- [15] D. Singerman, *Subgroups of Fuchsian groups and finite permutation groups*, Bull. London Math. Soc. 2 (1970), 319-323.

Received October 12, 2004

Revised version received July 25, 2005

 $($ I. N. Cangul) Uludağ Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü,16059 Bursa, Turkey

E-mail address: cangul@uludag.edu.tr

(R. Sahin, S. Ikikardes, and Ö. Koruoğlu) BALIKESIR ÜNIVERSITESI, FEN-EDEBIYAT FAKÜLTESI, MATEMATIK BÖLÜMÜ,10100 BALIKESIR, TURKEY

E-mail address: rsahin@balikesir.edu.tr

E-mail address: skardes@balikesir.edu.tr

E-mail address: ozdenk@balikesir.edu.tr