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Abstract

Möbius transformations generate the conformal group in the plane and have been used in neural networks and con-
formal field theory. Some invariant characteristic properties of Möbius transformations such as the invariance of cross-
ratio of four distinct points on the extended complex plane C1 ¼ C [ f1g under a Möbius transformation, have many
applications. We consider the geometric interpretation of the notion of n-transitivity of the group of Möbius transfor-
mations on the extended complex plane C1. We see that this notion is closely related to the invariant characteristic
properties of Möbius transformations and the notion of cross-ratio.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A Möbius transformation T has the form
0960-0
doi:10

E-m
T ðzÞ ¼ azþ b
czþ d

; a; b; c; d 2 C and ad � bc–0:
These transformations form a group under composition. We denote this group by M. It is well-known that Möbius
transformations map circles to circles (where straight lines are considered to be circles through 1). Conversely, that
any circle preserving meromorphic map of the extended complex plane onto itself is a Möbius transformation, (see
[8,20]). Therefore the principle of circle transformation is an invariant characteristic property of Möbius
transformations.

Recently, several new invariant characteristic properties of Möbius transformations have been given (see [2,3,9–
12,21–24]). These results require some known results from geometry together with well-known properties of Möbius
transformations such as the invariance of cross-ratio of four distinct points on C1 under a Möbius transformation.
Furthermore, some new geometric concepts were introduced and used for this purpose. For example, the concepts
of ‘‘k-Apollonius quadrilateral’’ and ‘‘ k-Apollonius 2n-gon’’ were introduced (see [21,24] for more details and exam-
ples, respectively).

Möbius transformations have been used in general neural networks, signal processing (see [6,14]), conformal field
theory and Cantorian E(1) theory (see [7,15–19]). The set of all Möbius transformations of the form
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T ðzÞ ¼ azþ b
czþ d

; ð1Þ
where a, b, c, d are integers with ad � bc = 1, form a subgroup of M and is called the modular group. The two trans-
formations RðzÞ ¼ � 1

z and S(z) = z + 1 generate the entire modular group. In the above studies, modular group plays
an important role. In [14], it was shown that both a nonlinear activation function of a neuron and a first order all-pass
filter section can be considered as Möbius transformations. Some inherent properties of neural networks, such as fixed
points and invertibility, and group delay properties of cascaded all-pass filters, were shown to be the consequence of
their Möbius representations (for more details see [6,14]). In [15], El Naschie showed the link between the fixed points
of the modular groups of the vacuum and the golden mean / ¼ 1

1þ/ ¼
ffiffi

5
p
�1

2
of E(1) spacetime by analytical continuation

of a Möbius transformation. In (1), if we assume that a � d = b = c and d > 0, then it can be easily seen that T has two
distinct fixed points namely,
1

/
¼ 1:6180339887 . . . and � / ¼ �0; 6180339887 . . . :
In [19], some connections between string theory and E(1) theory mediated by transformations of the modular group
were discussed. It was studied the behaviour of certain quantum probabilities under global diffeomorphisms generated
by transformations of the modular group. To do that it is sufficient to consider the generators of the modular group.
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is the dð0Þc of E(1) theory. In [18], it was shown that Klein modular curve is the holographic boundary of E(1)

Cantorian theory. For more details see [7,15–19]. For the usage of the notion of cross-ratio, one can consult [5,25].
In this paper we deal with the geometric interpretation of the notion of n -transitivity of the group M on C1. We

show that this notion is closely related to the invariant characteristic properties of Möbius transformations and the
notion of cross-ratio.
2. Main results

At first, we consider the case n = 4. If z1, z2, z3, z4 are four distinct points in C1, the cross-ratio and the absolute
cross-ratio of these points are defined by
½z1; z2; z3; z4� ¼
ðz1 � z2Þðz3 � z4Þ
ðz2 � z3Þðz4 � z1Þ

; jz1; z2; z3; z4j ¼
jz1 � z2j:jz3 � z4j
jz2 � z3j:jz4 � z1j

; ð2Þ
respectively. Möbius transformations preserve cross-ratios and absolute cross-ratios. The connection between Möbius
transformations, cross-ratios and the preservation of circles is well-known. It is well-known that M acts 3-transitively
but not 4-transitively on C1. The following theorem is also well-known:

Theorem 2.1 [13]. Let (z1, z2, z3, z4) and (w1,w2,w3,w4) be 4-tuples of distinct elements in C1. Then there exists some

Möbius transformation T with T(zj) = wj (j = 1,2,3,4) if and only if [z1, z2; z3, z4] = [w1,w2;w3,w4].

Note that the Möbius transformation T in Theorem 2.1 is unique.
In [11], Haruki and Rassias introduced the concept of ‘‘Apollonius quadrilateral’’ to give a new characterization of

Möbius transformations. The notion of ‘‘Apollonius quadrilateral’’ is closely related to the notion of ‘‘cross-ratio’’. This
connection was not mentioned explicitly in [11]. This connection was stated in [1]. Afterwards, in [21], Niamsup general-
ized the notion of Apollonius quadrilateral to the notion of k-Apollonius quadrilateral where k > 0. Then, by means of
this definition, a new invariant characteristic property of Möbius transformations was given. We recall this definition
from [21].

Definition 2.2. Let ABCD be an arbitrary quadrilateral (not necessarily simple) on C. If AB � CD ¼ kðBC � DAÞ holds,
then ABCD is said to be a k-Apollonius quadrilateral.

Property 1. Suppose that w = f(z) is analytic and univalent in a nonempty domain R of the z-plane. Let ABCD be an arbi-

trary k-Apollonius quadrilateral contained in R. If we set A 0 = f(A), B 0 = f(B), C 0 = f(C), D 0 = f(D), then A 0B 0C 0D 0 is also

a k-Apollonius quadrilateral.

Theorem 2.3 [21]. The function w = f(z) satisfies Property 1 iff w = f(z) is a Möbius transformation.

Clearly, four distinct points A, B, C and D on C form the vertices of a k-Apollonius quadrilateral if and only if
jA,B;C,Dj = k. So we get a Möbius transformation sends one k-Apollonius quadrilateral to another, and the ‘‘only
if part’’ of Theorem 2.3, when stated in terms of absolute cross-ratio, reads as follows.
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Theorem 2.4. Suppose that f is meromorphic in some domain in C, and that for every A, B, C and D, jA,B;C,Dj = k implies

jf(A), f(B); f(C), f(D)j = k. Then f is a Möbius transformation.

Theorem 2.4 is a generalization of Theorem A in [1].
Now we extend the notion of k-Apollonius quadrilateral. In Definition 2.2, we permit all of the points A, B, C and D

or any triple of them to be on the same straight line or one of these points to be 1, and we call such k-Apollonius
quadrilaterals as degenerate k-Apollonius quadrilaterals. For example a line segment or a triangle will represent a
degenerate k-Apollonius quadrilateral whose vertices are co-linear or whose tree vertices are co-linear. From now on
we use the term ‘‘k-Apollonius quadrilateral’’ to mean both of the degenerate or non-degenerate k-Apollonius quadri-
laterals. This extension allows us to do following observation.

There is a connection between the notions of k-Apollonius quadrilateral and 4-transitivity of the group M on C1.
Firstly, we note that any distinct four points on the extended complex plane form the vertices of a k-Apollonius quad-
rilateral. Indeed, let the points z1, z2, z3 and z4 be any distinct four points on the complex plane. If we write
jz1 � z2jjz3 � z4j
jz2 � z3jjz4 � z1j

¼ jkj;
where k = [z1,z2;z3,z4], we get
jz1 � z2jjz3 � z4j ¼ jkjjz2 � z3jjz4 � z1j:
That is, the points z1, z2, z3 and z4 form the vertices of the k-Apollonius quadrilateral where k = jkj. Combining these
facts with Theorem 2.1, we get the following theorem.

Theorem 2.5. Let (z1, z2, z3, z4) and (w1,w2,w3,w4) be 4-tuples of distinct elements in C1. If there exists some Möbius

transformation T with T(zi) = wi (i = 1,2,3,4), then the points z1, z2, z3, z4 form of the vertices of a k-Apollonius

quadrilateral and also the points w1, w2, w3, w4 form of the vertices of another k-Apollonius quadrilateral, where

k = jz1,z2; z3, z4j = jw1,w2;w3,w4j.

As a generalization of the notion of k-Apollonius quadrilateral, Samaris gave the following definition of k-Apollo-
nius 2n-gon, [24].

Definition 2.6. A 2n-gon (not necessarily simple) on the complex plane is called k-Apollonius if for the consecutive
vertices z1; z2; . . . ; z2n 2 C, the following condition holds
Aðz1; z2; . . . ; z2nÞ ¼ k; ð3Þ
where
Aðz1; z2; . . . ; z2nÞ ¼
jðz1 � z2Þðz3 � z4Þ . . . ðz2n�1 � z2nÞj

jðz2 � z3Þðz4 � z5Þ . . . ðz2n�2 � z2n�1Þðz2n � z1Þj
: ð4Þ
In [24], the following invariant characteristic property of Möbius transformations was given.

Theorem 2.7. If f is an analytic univalent function on an open region n then the following propositions are equivalent:

(i) f is a Möbius transformation.

(ii) There is k > 0 such that A(f(z1), f(z2), . . . , f(z2n)) = k, for every z1, z2, . . . , z2n 2n with A(z1, z2, . . . , z2n) = k.

Again we extend the notion of k-Apollonius 2n-gon in a similar manner. In Definition 2.6, we permit one of the
points zi to be infinity, or any number of them to be on the same straight line. We call such a k -Apollonius 2n-gon
as degenerate k-Apollonius 2n-gon. We use the term ‘‘k-Apollonius 2n-gon’’ to mean both of the degenerate or non-
degenerate k-Apollonius 2n-gons.

There is an interesting connection between the notion of k-Apollonius 2m -gon and 2m-transitivity (m P 3) of the
group M on C1 as in the case k-Apollonius quadrilateral and 4-transitivity for m = 2. We have the following theorem:

Theorem 2.8. Let (z1, . . . , z2m) and (w1, . . . ,w2m) be 2m-tuples of distinct elements in C1, (m P 3). If there exists some

Möbius transformation T with T(zi) = wi (1 6 i 6 2m), then the points z1, . . . , z2m form the vertices of a k-Apollonius 2m-

gon and also the points w1, . . . ,w2m form the vertices of another k-Apollonius 2m-gon where k = jk1j Æ jk2j Æ . . . jkm�1j and

ki = [z1, z2i; z2i+1, z2i+2], (1 6 i 6 m � 1).
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Proof. Let [z1,z2;z3,z4] = k1. Then we have
jz1 � z2j � jz3 � z4j
jz2 � z3j � jz4 � z1j

¼ jk1j: ð5Þ
If we take [z1,z4;z5,z6] = k2, we get
jz1 � z4j � jz5 � z6j
jz4 � z5j � jz6 � z1j

¼ jk2j ð6Þ
and hence
jk1j � jk2j ¼
jz1 � z2j � jz3 � z4j � jz5 � z6j
jz2 � z3j � jz4 � z5j � jz6 � z1j

: ð7Þ
Repeating this process, if we take [z1,z2m�2;z2m�1,z2m] = km�1, we have
jk1j � . . . � jkm�1j ¼
jz1 � z2j � jz3 � z4j � � � jz2m�1 � z2mj

jz2 � z3j � jz4 � z5j . . . jz2m�2 � z2m�1j � jz2m � z1j
¼ Aðz1; z2; . . . ; z2mÞ:
By Definition 2.6, the points z1, . . . ,z2m form the vertices of the k-Apollonius 2m-gon where k = jk1j Æ jk2j . . . jkm�1j and
ki = [z1,z2i;z2i+1,z2i+2], (1 6 i 6 m � 1). If there exists some Möbius transformation T with T(zi) = wi (1 6 i 6 2m), then
by Theorem 2.7, we have A(z1,z2, . . . ,z2m) = A(w1,w2, . . . ,w2m), that is, the points w1, . . . ,w2m form the vertices of an-
other k-Apollonius 2m-gon where k = jk1j Æ jk2j Æ . . . Æ jkm�1j. h

Finally we give a necessary and sufficient condition for the n -transitivity (n P 5) of the group M on C1 without any
restriction on n.

Theorem 2.9. Let (z1, . . . , zn) and (w1, . . . ,wn) be n-tuples of distinct elements in C1, (n P 5). Then there exists some

Möbius transformation T with T(zi) = wi (1 6 i 6 n) if and only if the cross-ratio of any four of the points zi (1 6 i 6 n) is

equal to the cross-ratio of the corresponding points wi.

Proof. Suppose that T(zi) = wi (1 6 i 6 n). Let zj, zk, zl, zm be the any four of the points zi (1 6 i, j, k, l, m 6 n) and wj,
wk, wl, wm be the corresponding ones. Let
UðzÞ ¼ ðz� wkÞðwl � wmÞ
ðwk � wlÞðwm � zÞ
be the unique Möbius transformation sending wk, wl, wm to 0, 1,1, respectively. We have U(wj) = [wj,wk;wl,wm]. Then
UT is a Möbius transformation sending zk, zl, zm to 0, 1, 1, respectively. Therefore UT is unique and we get
½zj; zk ; zl; zm� ¼ UT ðzjÞ ¼ UðwjÞ ¼ ½wj;wk ; wl;wm�:
Conversely, if T is the Möbius transformation mapping zi to wi (1 6 i 6 4) and S is the Möbius transformation map-
ping zi to wi for i = 5, 2, 3, 4 (by Theorem 2.1, T and S exist because of the condition on the equality of the cross-ratios),
then S = T because both Möbius transformations map zi to wi for i = 2, 3, 4, and a Möbius transformation is deter-
mined by the image of three points. The same line of argument works for other zi and wi pairs with i P 6. Therefore,
T is the unique Möbius transformation which map zi to wi (1 6 i 6 n). h

We can give the geometric interpretation of Theorem 2.9 as follows:

Theorem 2.10. Let (z1, . . . , zn) and (w1, . . . ,wn) be n-tuples of distinct elements in C1, (n P 5). If there exists some Möbius

transformation T with T(zi) = wi (1 6 i 6 n), then any four of the points zi (1 6 i 6 n) form the vertices of a k-Apollonius

quadrilateral and the corresponding points wj also form of the vertices of another k-Apollonius quadrilateral where k is the

equal absolute cross-ratios of these points zi and wi.
3. Conclusions

Möbius transformations have many applications in mathematical physics. In this paper, we have obtained the geo-
metric interpretation of the notion of n -transitivity of the group of Möbius transformations on the extended complex
plane. We have seen that this notion is closely related to the invariant characteristic properties of Möbius transforma-
tions and the notion of cross-ratio.
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