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The isomorphism between two fundamental

groups by Cayley graphs

A. Sinan Çevik and Özden Koruoğlu

scevik@balikesir.edu.tr, ozdenk@balikesir.edu.tr

Abstract

Let G1 and G2 be two finite groups and let Cay(G1, S1) and Cay(G2, S2) be the cor-
responding Cayley graphs of these groups, respectively. By [2] and [8], one can define the
fundamental group π1(Γ, v) by using any connected graph Γ with a fixed vertex v. In this
paper we give sufficient conditions for any two fundamental groups which are obtained by
Cayley graphs Cay(G1, S1) and Cay(G2, S2) to be isomorphic. At the final part of the
paper, we present some examples of this result.
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1 Introduction

In this section we recover some basic material about the Cayley graphs and the funda-

mental groups.

Let G be a finite group, and let S be a generating set of G. Let V (G, S) be the set of

vertices and let E(G, S) be the set of edges defined by

V (G, S) : The elements of G,

E(G, S) : The elements of the set G× S = {(g, s) : g ∈ G, s ∈ S}
and their inverses.

Then the graph obtained by the above sets is called Cayley graph of G and denoted by

Cay(G, S). The initial vertex of the edge (g, s) is g and the terminal is gs. Also the

inverse of the edge (g, s) is given by (gs, s−1). In other words,

ι(g, s) = g, τ(g, s) = gs and (g, s)−1 = (gs, s−1).

Therefore the equalities

ι(g, s) = τ((g, s)−1) τ(g, s) = ι((g, s)−1) and ((g, s)−1)−1 = (g, s)
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are hold. Since the direction of the edges are different than each other, we have (g, s) 6=
(g, s)−1. These above material give us that Cay(G, S) is actually defined as a graph.

Similar definitions for Cayley graphs can also be found in [1], [3], [6], [7].

To state our main result, we need to recall some basic facts about the fundamental

groups as well. We note that the reader can find the details of the following facts, for

instance, in [2], [8].

Let Γ be a graph and let V , E be the vertex and edge sets of Γ, respectively. A path α

is a sequence of edges e1e2 · · · en where τ(ei) = ι(ei+1), for i = 1, 2, · · · , n− 1 and ei ∈ E.

An elementary operation of a path is the elimination (or insertion) of a pair ei
εei

−ε in

this path. Two paths α, α∗ are equivalent if there are paths

α = α0, α1, · · · , αn = α∗

such that αi+1 is obtained from αi by an elemantary elimination (or insertion), for i =

1, 2, · · · , n− 1. We then write α ∼ α∗ and denote the equivalence class of α by [α].

If α, β are paths in Γ then we say that the product αβ is defined if τ(α) = ι(β).

In this case αβ is the path consisting of edges of α followed by the edges of β (so this

product is called partial multiplication). Then it is easy to show that if α ∼ α∗, β ∼ β∗

then αβ is defined and so α∗β∗. Also α ∼ α∗ and β ∼ β∗ gives that αβ ∼ α∗β∗.

We define a partial multiplication of equivalence classes by

[α][β] = [αβ] where τ(α) = ι(β) (1)

which is well-defined by the above paragraph. Now let us fix a vertex v ∈ V of Γ, and

consider the set

{[α] : ι(α) = τ(α) = v}. (2)

Then we can multiply any two elements of this set since [α][β] = [αβ] and τ(α) = ι(β).

The set (2) with the multiplication, as in (1), defines a group where the identity ele-

ment is [1v] and the inverse of an element [α] is [α−1]. This group is called the fundamental

group of Γ at v and denoted by π1(Γ, v).

2 The main theorem

Let G1, G2 be finite groups with the minimal number of generating sets S1, S2, respectively

and let Cay(G1, S1), Cay(G2, S2) be the corresponding Cayley graphs of G1 and G2,

respectively. Also let v1 and v2 be any two vertices in Cay(G1, S1) and Cay(G2, S2). We

then have the following result as a main theorem of this paper.

Theorem 2.1 π1(Cay(G1, S1), v1) ∼= π1(Cay(G2, S2), v2) if |S1| = |S2| and |G1| = |G2|
where | . | denotes the number of elements in the set.
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3 Proof of the main theorem

To prove Theorem 2.1 we need to remind some results which the proofs of them can be

found in [2], [4] and [8].

Let F (X) and F (Y) be the free groups with the generating sets X and Y, respectively.

Proposition 3.1

F (X) ∼= F (Y) ⇔ rk(X) = rk(Y),

where rk( . ) denotes the rank of the set.

Let Γ be any graph and let π1(Γ, v) be a fundamental group defined on Γ.

Proposition 3.2 π1(Γ, v) is a free group.

Proposition 3.3 If u and v are two vertices in Γ such that u, v can be joined by a path

then π1(Γ, u) ∼= π1(Γ, v).

Let T be a maximal tree (see, for instance [9] and [11]) in Γ and, for v, v1 ∈ V , let

γv1 be a geodesic (that is, the smallest path from v to v1) in T . Then one can define

the elements of the generating set of the fundamental group as te = [γι(e)eγ
−1
τ(e)] where

e ∈ E but e /∈ T . It is clear that the total number of elements in the generating set gives

the rank of the fundamental group. So, for a fixed v ∈ V , let us denote the rank of the

fundamental group π1(Γ, v) by rk(Xπ1(Γ,v)). We then have the following result.

Theorem 3.4 ([2], [8]) Let Γ be a connected graph and let v be a vertex in Γ. Suppose

that the number of edges is 2n and the number of vertices is m 6= 0 (n, m ∈ N) in Γ.

Then the rank of π1(Γ, v) is n−m + 1.

Now by considering the Cayley graph Cay(G, S) for a finite group G, we can prove

the following lemmas.

Lemma 3.5

|V (G, S)| = |G| and |E(G, S)| = 2|G||S|.

Proof. By the definition of Cayley graphs, since the vertices of Cay(G, S) are the

elements of G then it is clear that |V (G, S)| = |G|. Moreover, again by the definition,

the edge set of this Cayley graph is obtained by the elements of the set G× S and their

inverses then the number of elements of E(G, S) is equal twice the number of elements

in G× S. In other words |E(G, S)| = 2|G||S|, as required. ♦

Lemma 3.6 Cay(G, S) is connected.
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Proof. It is well known that to see a graph is connected, it is enough to show that each

vertex is combined to a fixed vertex by a path in that graph. Since G is finite, let us

assume that the generating set of G is S = {s1, s2, · · · , sn}. Thus, for all g ∈ G, the

element g of G can be written by g = sε1
g1s

ε2
g2 · · · sεn

gn (sgi ∈ S, εi = ±1 and 1 ≤ i ≤ n).

Then it is easy to see that the vertex 1 ∈ G can be combined to the vertex g by the path

ρ = (1, sε1
g1)(s

ε1
g1, s

ε2
g2) · · · (sε1

g1s
ε2
g2 · · · s

εn−1

g(n−1), s
εn
gn).

For the path ρ, we have ι(ρ) = 1 and τ(ρ) = sε1
g1s

ε2
g2 · · · sεn

gn = g. By applying this procedure

for every element of G, we can see that the Cayley graph Cay(G, S) is connected, as

required. ♦

Now we can prove our main theorem as follows.

Let us assume that |G1| = |G2| = m and |S1| = |S2| = n where m, n ∈ Z+. By

Lemma 3.5, for the Cayley graphs Cay(G1, S1), Cay(G2, S2), the number of elements in

the edge sets E(G1, S1) and E(G2, S2) is 2|G1||S1| and 2|G2||S2|, respectively. Therefore,

by the assumption, the number of edges are equal in these both Cayley graphs and this

number is 2mn. Also, by the definition of Cayley graphs, the number of vertices in

Cay(G1, S1) is |G1| and similarly, the number of vertices in Cay(G2, S2) is |G2|. Thus, by

the assumption, the number of vertices in both Cayley graphs are equal and this number

is m.

By Proposition 3.2, we know that the fundamental groups are free. Also, by Lemma

3.6, the Cayley graphs Cay(G1, S1) and Cay(G2, S2) are connected. By Proposition 3.3,

since Cay(G1, S1) is connected then, for each u ∈ V (G1, S1), the fundamental groups

of Cay(G1, S1) at u are isomorphic. Similarly, for each v ∈ V (G2, S2), the fundamental

groups of Cay(G2, S2) at v are isomorphic. In this proof, since we are checking the case

of isomorphism between two fundamental groups which are free, then we must count the

rank of each π1(Cay(G1, S1), u) and π1(Cay(G2, S2), v). In fact, by Theorem 3.4, the each

rank of π1(Cay(G1, S1), u) and π1(Cay(G2, S2), v) is mn−m + 1.

Thus we have

rk(Xπ1(Cay(G1,S1),u)) = rk(Xπ1(Cay(G2,S2),v)).

Then, by Proposition 3.1,

π1(Cay(G1, S1), u) ∼= π1(Cay(G2, S2), v),

as required.

Hence the result. ♦

Remark 3.7 The inverse of Theorem 2.1 is not always true. To see this let us assume

that

π1(Cay(G1, S1), u) ∼= π1(Cay(G2, S2), v),
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where u ∈ V (G1, S1) and v ∈ V (G2, S2). Then, by Proposition 3.1, we have

rk(Xπ1(Cay(G1,S1),u)) = rk(Xπ1(Cay(G2,S2),v)).

But this equality does not imply the conditions |G1| = |G2| and |S1| = |S2| hold.

4 Some examples

In this section we will consider some examples and applications of Theorem 2.1. We

should note that the notation Zn denotes the cyclic group of order n at the rest of the

paper.

Example 4.1 Let G1 = V4 (Klein 4-group) and G2 = Z2 × Z2. By [4], these groups are

presented by

P1 =
〈
a, b ; a2, b2, (ab)2

〉
and P2 =

〈
c, d ; c2, d2, cdc−1d−1

〉
.

Then, by using these presentations, it is easy to draw the Cayley graphs corresponding

these groups (see [10]). It is well known that G1
∼= G2. Then |G1| = |G2| = 4 and

|S1| = |S2| = 2. Thus, by Theorem 2.1,

π1(Cay(G1, S1), u) ∼= π1(Cay(G2, S2), v),

for any u ∈ V (G1, S1) and v ∈ V (G2, S2).

Example 4.2 Let G1 = S3 (permutation group) and G2 = Z2 ×Z3. It is clear that these

groups are not isomorphic. Again, by [4], these groups are presented by

P1 =
〈
a, b ; a2, b3, (ab)2

〉
and P2 =

〈
c, d ; c2, d3, cdc−1d−1

〉
.

Then one can easily draw the Cayley graphs of these groups (see [10] for the details). It

is also clear that |G1| = |G2| = 6 and |S1| = |S2| = 2. Thus, by Theorem 2.1, we can

get the isomorphism between two fundamental groups obtained by the Cayley graphs over

these groups.

As a consequence of Theorem 2.1 and Example 4.2, we have the following result.

Corollary 4.3 Let G1 and G2 be two finite groups. Suppose that they are not isomorphic

to each other. Then π1(Cay(G1, S1), u) ∼= π1(Cay(G2, S2), v) if

rk(Xπ1(Cay(G1,S1),u)) = rk(Xπ1(Cay(G2,S2),v)),

where u ∈ V (G1, S1), v ∈ V (G2, S2).
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Example 4.4 For any m,n ∈ Z+, it is well known that Zm × Zn
∼= Zmn if and only if

(m,n) = 1. Also, by [4], these groups are presented by

P1 = 〈a, b ; am, bn, [a, b]〉 and P2 = 〈c ; cmn〉 .

As in the previous examples, by [11], one can draw the Cayley graphs of these groups.

Let us denote the Cayley graph of G1 = Zm×Zn by Cay(G1, S1) and the Cayley graph of

G2 = Zmn by Cay(G2, S2). Clearly |G1| = |G2| = mn and |S1| = 2, |S2| = 1.

For a fixed u ∈ V (G1, S1), we have the fundamental group π1(Cay(G1, S1), u) and

rk(Xπ1(Cay(G1,S1),u)) = 2mn−mn + 1.

Similarly, for a fixed v ∈ V (G2, S2), we have the fundamental group π1(Cay(G2, S2), v)

and

rk(Xπ1(Cay(G2,S2),v)) = mn−mn + 1 = 1.

Therefore rk(Xπ1(Cay(G1,S1),u)) 6= rk(Xπ1(Cay(G2,S2),v)) so, by Proposition 3.1, π1(Cay(G1, S1), u)

and π1(Cay(G2, S2), v) are not isomorphic.

As a consequence of Theorem 2.1 and Example 4.4, we have the following result.

Corollary 4.5 For finite groups G1 and G2, if G1
∼= G2 such that

rk(Xπ1(Cay(G1,S1),u)) 6= rk(Xπ1(Cay(G2,S2),v))

then, for a fixed u ∈ V (G1, S1) and v ∈ V (G2, S2), the fundamental groups π1(Cay(G1, S1), u)

and π1(Cay(G2, S2), v) are not isomorphic.

Questions:

1) Is it possible to expand Theorem 2.1 as necessity and sufficiency?

2) Can the subject of Schur multiplier (see [5]) be a method to show that the isomorphism

between two fundamental groups?
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