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A Simple Approach to Fourth Generation Effects in B → X
s
ℓ
+
ℓ
− Decay

Levent Solmaz∗

Balikesir University, Physics Department (32), Balikesir, Turkey
(Dated: February 7, 2008)

Abstract
In a scenario in which fourth generation fermions exist, we study effects of new physics on the differential decay width,

forward-backward asymmetry and integrated branching ratio for B → Xsℓ
+ℓ− decay with (ℓ = e, µ). Prediction of the new

physics on the mentioned quantities essentially differs from the Standard Model results, in certain regions of the parameter
space, enhancement of new physics on the above mentioned physical quantities can yield values as large as two times of the SM
predictions, whence present limits of experimental measurements of branching ratio is spanned, contraints of the new physics
can be extracted. For the fourth generation CKM factor V ∗

t′b
Vt′s we use ±10−2 and ±10−3 ranges, take into consideration the

possibility of a complex phase where it may bring sizable contributions, obtained no significant dependency on the imaginary
part of the new CKM factor. For the above mentioned quantities with a new family, deviations from the SM are promising,
can be used as a probe of new physics.
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I. INTRODUCTION

Even if Standard Model (SM) is a successful theory, one should also check probable effects that may come from
potential new physics. In the SM, since we do not have a clear theoretical argument to restrict number of generations
to three, possibility of a new generation should not be ruled out until there is a certain evidence which order us to
do so. This is especially true for rare B decays, which are very sensitive to generic expansions of the SM, due to
their loop structure. We know from neutrino experiments that, for the mass of the extra generations there is a lower
bound for the new generations (mν4

> 45 GeV ) [1]. Probable effects of extra generations was studied in many works
[2]–[16]. The existing electroweak data on the Z–boson parameters, the W boson and the top quark masses excluded
the existence of the new generations with all fermions heavier than the Z boson mass [16], nevertheless, the same
data allows a few extra generations, if one allows neutral leptons to have masses close to 50 GeV . In addition to this,
recently observed neutrino oscillations requires an enlarged neutrino sector [17].

Generalizations of the SM can be used to introduce a new family, which was performed previously [18]. Using similar
techniques, one can search fourth generation effects in B meson decays. The contributions from fourth generation
to rare decays have been extensively studied [19, 20, 21, 22, 23], where the measured decay rate has been used to
put stringent constraints on the additional CKM matrix elements. In addition to B → Xsγ , B → Xsℓ

+ℓ− can be
mentioned as one of the most promising areas in search of the fourth generation, via its indirect loop effects, to
constrain V ∗

t′bVt′s [24, 25]. The restrictions of the parameter space of nonstandard models based on LO analysis are
not as sensitive as in the case of NLO analysis, hence a NLO analysis considering the possibility of a complex phase
is important, which we plan to revise [26].

On the experimental side, the inclusive B → Xsℓ
+ℓ− (with

√
q2 > 0.2 GeV) decay with electron and muon modes

combined (ℓ = e, µ) have been observed (Belle [27]), (BaBar [28]),

B(B → Xsℓ
+ℓ−) = (6.1 ± 1.4+1.4

−1.1) · 10−6, (1)

B(B → Xsℓ
+ℓ−) = (6.3 ± 1.6+1.8

−1.5) · 10−6 . (2)

They are in agreement with the SM B(B → Xsℓ
+ℓ−)SM = 4.2 ± 0.7 · 10−6 for the same cuts [29].

On the theoretical side, situation within and beyond the SM is well settled. A collective theoretical effort has led to
the practical determination of B → Xsℓ

+ℓ− at the NNLO, which was completed recently, as a joint effort of different
groups ([30, 31, 32]), and references therein. It is necessary to have precise calculations also in the extensions of the
SM, which was performed for certain models. With the appearance of more accurate data we might be able to provide
stringent constrains on the free parameters of the models beyond SM. From this respect, a NNLO analysis of the new
generation is important. We study the contribution of the fourth generation in the rare B → Xsℓ

+ℓ−decay at NNLO,
to obtain experimentally measurable quantities which is expected to appear in the forthcoming years.

The paper is organized as follows. In section 2, we present the necessary theoretical expressions for the
B → Xsℓ

+ℓ−decay in the SM with four generations. Section 3 is devoted to our conclusion.

II. B → XSℓ+ℓ− DECAY AND FOURTH GENERATION

We use the framework of an effective low-energy theory, obtained by integrating out heavy degrees of freedoms,
which in our case W-boson and top quark and an additional t′ quark. Mass of the t′ is at the order of µW . In this
approximation the effective Hamiltonian relevant for the B → Xsℓ

+ℓ−decay reads [33]

Heff = −4GF√
2

V ∗

tsVtb

10∑

i=1

Ci(µ)Oi(µ) , (3)

where GF is the Fermi coupling constant V is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, the
the full set of the operators Oi(µ) and the corresponding expressions for the Wilson coefficients Ci(µ) in the SM can
be found in Ref.[30].

In the model under consideration, the fourth generation is introduced in a similar way the three generations are
introduced in the SM, no new operators appear and clearly the full operator set is exactly the same as in SM, which
is a rough approximation. The fourth generation changes values of the Wilson coefficients Ci(µ), i = 7, 8, 9 and 10,
via virtual exchange of the fourth generation up quark t′. With the definitions λj = V ∗

jsVjb, where j = u, c, t, t′, the
new physics Wilson coefficients can be written in the following form

C4G
i (µW ) =

λt′

λt

Ci(µW )mt→m
t′

, (4)
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where the last terms in these expression describes the contributions of the t′ quark to the Wilson coefficients with the
replacement of mt with mt′. Notice that we use the definition λt′ = V ∗

t′sVt′b which is the element of the 4×4 Cabibbo–
Kobayashi–Maskawa (CKM) matrix, from now on ’4G’ will stand for sequential fourth generation model. In this model
properties of the new t′ quark are the same as ordinary t, except its mass and corresponding CKM couplings. A few
comments are in order here: to obtain quantitative results we need the value of the fourth generation CKM matrix
element V ∗

t′sVtb which can be extracted i.e. from B → Xsγ decay as a function of mass of the new top quark m′

t. For
this aim following [24, 25], we can use the fourth generation CKM factor λt′ in the range −10−2 ≤ λt′ ≤ 10−2. In the
numerical analysis, as a first step, λt′ is assumed real and expressions are obtained as a function of mass of the extra
generation top quark mt′ . It is interesting to notice that, if we assume λt′ can have imaginary parts, experimental
values can also be satisfied [23, 26]. Nevertheless, if we impose the unitarity condition of the CKM matrix we have

V ∗

usVub + V ∗

csVcb + V ∗

tsVtb + V ∗

t′sVt′b = 0 . (5)

With the values of the CKM matrix elements in the SM [34], the sum of the first three terms in Eq. (5) is about
7.6 × 10−2, where the error in sum of first three terms is about ±0.6 × 10−2. We assume the value of λt′ is within
this error range.

What should not be ignored in constraining λt′ is that, when adding a fourth family the present constrains on
the elements of CKM may get relaxed [34]. In order to have a clear picture of λt′ , CKM matrix elements should
be calculated with the possibility of a new family, using present experiments that constitutes the CKM. From this
respect we do not have to exclude certain regions that violate unitarity of the present CKM, but take it in the ranges
−10−2 ≤ λt′ ≤ 10−2 and −10−3 ≤ λt′ ≤ 10−3.

A. Differential Decay Width

Since extended models are very sensitive to NNLO corrections, we used the NNLO expression for the branching
ratio of the radiative decay B → Xsℓ

+ℓ−, which has been presented in Refs. [29, 33]. In the NNLO approximation,
the invariant dilepton mass distribution for the inclusive decay B → Xsℓ

+ℓ− can be written as

dΓ(b → Xsℓ
+ℓ−)

dŝ
=

(αem

4π

)2 G2
F m5

b,pole |V ∗

tsVtb|
2

48π3
(1 − ŝ)2

×
(

(1 + 2ŝ)

(∣∣∣C̃eff
9

∣∣∣
2

+
∣∣∣C̃eff

10

∣∣∣
2
)

+ 4 (1 + 2/ŝ)
∣∣∣C̃eff

7

∣∣∣
2

+ 12Re
(
C̃eff

7 C̃eff∗

9

))
, (6)

where ŝ = m2
ℓ+ℓ−

/m2
b,pole with (ℓ = e or µ). In the SM the effective Wilson coefficients C̃eff

7 , C̃eff
9 and C̃eff

10 are given

by [30, 33] and can be obtained from Eqs.(8,9 and 10), by setting 4G → 0. Following the lines of A.Ali [29] with
the assumption that only the lowest non-trivial order of these Wilson coefficients get modified by new physics, which

means that C
(1)
7 (µW ), C

(1)
8 (µW ), C

(1)
9 (µW ) and C

(1)
10 (µW ) get modified, the shifts of the Wilson coefficients at µW

can be written as

Ci(µW ) −→ Ci(µW ) +
αs

4π
C4G

i (µW ) . (7)

These shift at the matching scale are resulted in the modifications of the effective Wilson coefficients,

C̃eff
7 =

(
1 +

αs(µ)

π
ω7(ŝ)

)
(A7 + A77 C4G

7 (µW ) + A78 C4G
8 (µW ))

−αs(µ)

4π

(
C

(0)
1 F

(7)
1 (ŝ) + C

(0)
2 F

(7)
2 (ŝ) + A

(0)
8 F

(7)
8 (ŝ) + A

(0)
88 C4G

8 (µW )F
(7)
8 (ŝ)

)
, (8)

C̃eff
9 =

(
1 +

αs(µ)

π
ω9(ŝ)

) (
A9 + T9 h(m̂2

c , ŝ) + U9 h(1, ŝ) + W9 h(0, ŝ) + C4G
9 (µW )

)

−αs(µ)

4π

(
C

(0)
1 F

(9)
1 (ŝ) + C

(0)
2 F

(9)
2 (ŝ) + A

(0)
8 F

(9)
8 (ŝ) + A

(0)
88 C4G

8 (µW )F
(9)
8 (ŝ)

)
, (9)

C̃eff
10 =

(
1 +

αs(µ)

π
ω9(ŝ)

)
(A10 + C4G

10 ) . (10)

The numerical values for the parameters A77, A78, A
(0)
88 , which incorporate the effects from the running, can be found

in the same reference [29], for the functions h(m̂2
c , ŝ) and ω9(ŝ), they are given in Ref. [30], while ω7(ŝ) and F

(7,9)
1,2,8 (ŝ)

3
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FIG. 1: Branching ratio B
B→Xsℓ

+
ℓ
−

[10−6] as a function of ŝ ∈ [0.05, 0.25](see Eq.(11)). The four thick lines show the NNLL
prediction for mt′ = 200, 300, 400 and 500 with increasing thickness respectively and the SM prediction is the thin line. The
figures are obtained at the scale µ = 5.0 GeV . For the figure at the Left: λt′ = −10−2, Right: λt′ = 10−2.
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FIG. 2: The same as Fig.1 with the choices, For the figure at the Left: λt′ = −10−3, Right: λt′ = 10−3

can be seen in Ref. [33]. In order to remove the large uncertainty coming from mb terms it is customary to use the
following expression [29]

BB→Xsℓ+ℓ−(ŝ) =
BB→Xceν̄

exp

Γ(B → Xceν̄)

dΓ(B → Xsℓ
+ℓ−)

dŝ
, (11)

which can be called as branching ratio. The explicit expression for the semi-leptonic decay width can be found in Ref.
[30]. The branching ratio with 4G is presented in Figs. (1,2) for the choice of the scale µ = 5 GeV .

In the figures related with dilepton invariant mass distribution we used the low region ŝ ∈ [0.05, 0.25] where peaks
stemming from cc̄ resonances are expected to be small. During the calculations we take BB→Xceν̄

exp
= 0.1045.

B. Forward-Backward asymmetry

We investigate both, the so-called normalized and the unnormalized forward-backward asymmetry with 4G model.
The double differential decay width d2Γ(b → Xsℓ

+ℓ−)/(dŝ dz), (z = cos(θ)) is expressed as [31]

d2Γ(b → Xs ℓ+ℓ−)

dŝ dz
=

(αem

4 π

)2 G2
F m5

b,pole |V ∗

tsVtb|2

48 π3
(1 − ŝ)2

4



×
{

3

4
[(1 − z2) + ŝ(1 + z2)]

(∣∣∣C̃eff
9

∣∣∣
2

+
∣∣∣C̃eff

10

∣∣∣
2
) (

1 +
2αs

π
f99(ŝ, z)

)

+
3

ŝ
[(1 + z2) + ŝ(1 − z2)]

∣∣∣C̃eff
7

∣∣∣
2
(

1 +
2αs

π
f77(ŝ, z)

)

−3 ŝ z Re(C̃eff
9 C̃eff∗

10 )

(
1 +

2αs

π
f910(ŝ)

)

+6 Re(C̃eff
7 C̃eff∗

9 )

(
1 +

2αs

π
f79(ŝ, z)

)

−6 z Re(C̃eff
7 C̃eff∗

10 )

(
1 +

2αs

π
f710(ŝ)

)}
. (12)

where θ is the angle between the momenta of the b quark and the ℓ+, measured in the rest frame of the lepton pair.
The functions f99(ŝ, z), f77(ŝ, z), f910(ŝ), f79(ŝ, z) and f710(ŝ) are the analogues of ω99(ŝ), ω77(ŝ) and ω79(ŝ) which
can be found in the same reference [31]

0 0.05 0.1 0.15 0.2 0.25
-6

-4

-2

0

2

0 0.05 0.1 0.15 0.2 0.25

-2

-1.5

-1

-0.5

0

0.5

1

FIG. 3: Unnormalized forward-backward asymmetry AFB [10−6] as a function of ŝ ∈ [0, 0.25] (see Eq.(13)). The four thick
lines show the NNLL prediction for mt′ = 200, 300, 400 and 500 with increasing thickness respectively and the SM prediction
is the thin line. The figures are obtained at the scale µ = 5.0 GeV . For the figure at the Left: λt′ = −10−2, Right: λt′ = 10−2.
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FIG. 4: The same as Fig.3 with the choices: Left: λt′ = −10−3, Right: λt′ = 10−3

The unnormalized version of forward-backward asymmetry, AFB(ŝ) is defined as

AFB(ŝ) =

∫ 1

−1
d2Γ(b→Xs ℓ+ℓ−)

dŝ dz
sgn(z) dz

Γ(B → Xceν̄e)
BB→Xceν̄

exp
, (13)

5



0 0.05 0.1 0.15 0.2 0.25

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.05 0.1 0.15 0.2 0.25

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

FIG. 5: Normalized forward-backward asymmetry AFB [10−6] as a function of ŝ ∈ [0, 0.25] (see Eq.(14)). The four thick lines
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while the definition of the normalized forward-backward asymmetry AFB(ŝ) reads

AFB(ŝ) =

∫ 1

−1
d2Γ(b→Xs ℓ+ℓ−)

dŝ dz
sgn(z) dz

∫ 1

−1
d2Γ(b→Xs ℓ+ℓ−)

dŝ dz
dz

. (14)

The position of the zero of the AFB(ŝ0) = 0 is very sensitive to 4G effects as it is seen in the figures (3,5). However
as 4G parameter λt′ decreases expectations of the new model are getting closer to SM values which can be inferred
from Figs.(4,6)

C. Integrated Branching Ratio

By suitable choice of integration limits over ŝ one can obtain integrated branching ratio in accordance with the
experiment for e and µ, which is already performed, hence we use the integrated branching ratio expression which
has the following form [29]:

B(B → Xsℓ
+ℓ−) = 10−6 ×

[
a1 + a2 |Atot

7 |2 + a3 (|C4G
9 |2 + |C4G

10 |2)

+a4 Re Atot
7 ReC4G

9 + a5 Im Atot
7 Im C4G

9 + a6 Re Atot
7

+a7 Im Atot
7 + a8 Re C4G

9 + a9 Im C4G
9 + a10 Re C4G

10

]
, (15)

6
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+ℓ−) [10−6] as a function of λt′ for ℓ = µ. In the left figure λt′ ∈ [−10−2, 10−2].

For the figure at the right λt′ ∈ [−10−3, 10−3]. In the figures straight lines show the SM region.

where the numerical value of the coefficients ai are given in Table I for ℓ = e, µ. For the integrated branching
ratios we refer to Figs.(7,8) of electron and muon respectively.

ℓ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

e 1.9927 6.9357 0.0640 0.5285 0.6574 0.2673 -0.0586 0.4884 0.0095 -0.5288

µ 2.3779 6.9295 0.0753 0.6005 0.7461 0.5955 -0.0600 0.5828 0.0102 -0.6225

TABLE I: Numerical values of the coefficients ai (evaluated at µb = 5 GeV) for the decays B → Xsℓ
+ℓ− (ℓ = e, µ), taken from

Ref. [29].

III. DISCUSSION

In the sequential fourth generation model, there are basically two free parameters, mass of new generations and
CKM factors which can have imaginary phases. As a worst scenario, we decompose λt′ = Re[λt′] + I × Im[λt′] and

choose the range Im[λt′]
Re[λt′]

≤ 10−2; we checked the effect of this choice and observe that contribution from the imaginary

7



part can be neglected for all of the kinematical observables. Naturally, these quantities should be fixed by respecting
experiment. Besides, constraints for CKM values should be updated by noting that existance of a new generation can
relax the matrix elements of CKM3×3, when it is accepted as a sub-matrix of CKM4×4.

Since scale dependency of NNLO calculations of B → Xsℓ
+ℓ− are not very high [31], during the calculations we

set the scale µ = 5 GeV , use the main input parameters as follows,

αem = 1/133 , αs(mZ) = 0.119 , GF = 1.16639× 10−5 GeV−2 , mW = 80.33 GeV ,

mb = 4.8 GeV , mt = 176 GeV, mc = 1.4 GeV, Wolfenstein parameters:

A = 0.75 , λ = 0.221 , ρ = 0.4, η = 0.2 . (16)

Effects of new physics on kinemaical observables can be summerized as follows:

• Differential decay width BB→Xsℓ+ℓ− is presented in figures Fig.(1,2), where it is shown that SM prediction can
be strongly enhanced with a new quark for the choice λt′ < 0. It is also possible to supress the decay width for
positive solutions of λt′ which is not favored.

• Forward-Backward asymmetry is also very sensitive to 4G effects, especially for the choice λt′ = 10−2. As it is
seen in Figs.(3,5), as the mass of mt′ increases it is even possible to have positive values for AFB(0) which is in
contradiction with SM, but natural in extended models. Once the experimental results related with this quantity
is obtained, it will be a keen test of fourth generation model. Deviations from the point ŝ=0 are detectable as it
is seen in Fig.(4) for the choice of λt′ ∈ [−10−3, 10−3], whereas for the same region we see almost no dependence
on the normalized forward-backward asymmetry in Fig.(6). While Standard Model states the central value

ANNLO
FB (0) = −(2.30± 0.10)× 10−6, 4G predictions cover the range A4G,NNLO

FB (0) ∈ [−6, 1]× 10−6for the choices
λt′ = −10−2, 10−2 respectively. For the point where forward-backward asymmetry vanishes Standard Model

result is ŝNNLO
0 = 0.162 ± 0.002 however 4G predictions are roughly ŝ4G,NNLO

0 ∈ [0.13, 0.18].

• Integrated branching ratios Figs.(7,8) strongly depends on the new physics parameters λt′ and mt′ , therefore it
is possible to restrict them by respecting experiments. As it can be deduced from the figures when 4G effects
are switched off our calculations are lying on the SM ground within error bars [29]. Similar to branching ratio
for integrated branching ratios enhancement comes from negative choices of λt′ which favors smaller values for

ASM,NNLO
FB (0) = −(2.30 ± 0.10)× 10−6.

To summarize, in this work we present the predictions of the sequential fourth generation model for experimentally
measurable quantities related with B → Xsℓ

+ℓ− decay which is expected to emerge in the near future thanks to
running B factories. These predictions differ from SM in certain regions, hence can be used, to differentiate the
existence of the fourth family or to put stringent constrains on the free parameters of the model, if it exists.
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[23] T.M. Aliev, A. Özpineci and M. Savcı, Eur.Phys.J. C 29 (2003) 265-270 [hep-ph/0301078]
[24] C. S. Huang, W. J. Huo and Y. L. Wu, prep. [hep–ph/9911203] (1999).
[25] T. M. Aliev et al., Nucl. Phys. B. 585 (2000) 275.
[26] L. Solmaz, [hep–ph/0204016] (2002).
[27] J. Kaneko et al. [Belle Collaboration], Phys. Rev. Lett. 90, 021801 (2003) [hep-ex/0208029].
[28] B. Aubert [BABAR Collaboration], [hep-ex/0308016].
[29] A. Ali et al., Phys. Rev. D 66, 034002 (2002) [hep-ph/0112300].
[30] C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220].
[31] H. M. Asatrian et al., Phys. Rev. D 66, 094013 (2002) [hep-ph/0209006].
[32] A. Ghinculov et al., Nucl. Phys. B 648, 254 (2003) [hep-ph/0208088];
[33] H. H. Asatrian, H. M. Asatrian, C. Greub and M. Walker, Phys. Lett. B 507 (2001) 162 [hep-ph/0103087];

H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, Phys. Rev. D 65 (2002) 074004 [hep-ph/0109140].
[34] C. Caso et al., Eur. J. Phys. C3 (1998) 1.

9

View publication statsView publication stats

http://arXiv.org/abs/hep-ph/0301078
http://arXiv.org/abs/hep--ph/9911203
http://arXiv.org/abs/hep--ph/0204016
http://arXiv.org/abs/hep-ex/0208029
http://arXiv.org/abs/hep-ex/0308016
http://arXiv.org/abs/hep-ph/0112300
http://arXiv.org/abs/hep-ph/9910220
http://arXiv.org/abs/hep-ph/0209006
http://arXiv.org/abs/hep-ph/0208088
http://arXiv.org/abs/hep-ph/0103087
http://arXiv.org/abs/hep-ph/0109140
https://www.researchgate.net/publication/242325202

	Introduction
	BXs + - decay and fourth generation
	Differential Decay Width
	Forward-Backward asymmetry
	Integrated Branching Ratio

	Discussion
	References

