dc.contributor.author | Taş, Nihal | |
dc.contributor.author | Özgür, Nihal Yılmaz | |
dc.date.accessioned | 2020-01-14T11:44:22Z | |
dc.date.available | 2020-01-14T11:44:22Z | |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 1583-5022 | |
dc.identifier.issn | 2066-9208 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/10457 | |
dc.description.abstract | The aim of this paper is to obtain new solutions to the open question on the existence of a contractive condition which is strong enough to generate a fixed point but which does not force the map to be continuous at the fixed point. To do this, we use the right-hand side of the classical Rhoades' inequality and the number M (x, y) given in the definition of an (alpha, beta)-Geraghty type-I rational contractive mapping. Also we give an application of these new results to discontinuous activation functions. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | House Book Science-Casa Cartii Stiinta | en_US |
dc.relation.isversionof | 10.24193/fpt-ro.2019.2.47 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Discontinuity | en_US |
dc.subject | Fixed Point | en_US |
dc.subject | Fixed Circle | en_US |
dc.subject | Metric Space | en_US |
dc.subject | Activation Function | en_US |
dc.title | A new contribution to discontinuity at fixed point | en_US |
dc.type | article | en_US |
dc.relation.journal | Fixed Point Theory | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-4 535-4019 | en_US |
dc.identifier.volume | 20 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 715 | en_US |
dc.identifier.endpage | 728 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |