dc.contributor.author | Noiri, Takashi | |
dc.contributor.author | Açıkgöz, Ahu | |
dc.date.accessioned | 2020-01-27T11:17:55Z | |
dc.date.available | 2020-01-27T11:17:55Z | |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 978-0-7354-1930-8 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/10601 | |
dc.description | Açıkgöz, Ahu (Balikesir Author) | en_US |
dc.description.abstract | Noiri and Popa [18] have defined the minimal local function and the minimal structure m(H)* which contains m in a hereditary minimal space (X, m, H). Moreover the concepts of m - H-g - closed sets and (A, m(H)*)-closed sets in a hereditary minimal space (X, m, H) are presented and investigated by Noiri and Popa in [18]. In this paper, we define the notions m*-g-closed sets and m*-H-g-closed sets in a hereditary minimal space (X, m, H) and explore some of their basic properties and few characterizations. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Amer Inst Physics | en_US |
dc.relation.isversionof | 10.1063/1.5136117 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | m* - H-g - Closed | en_US |
dc.subject | m* - g - Closed; m* - R-1 | en_US |
dc.subject | m - R-0; m* - R-0 | en_US |
dc.title | On m* - g-closed sets and m* - R-0 spaces in a hereditary m-space (X, m, H) | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | Third International Conference of Mathematical Sciences (ICMS 2019) | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 2183 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |