dc.contributor.author | Güven, Ali | |
dc.date.accessioned | 2021-07-30T07:04:53Z | |
dc.date.available | 2021-07-30T07:04:53Z | |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 1300-0098 | |
dc.identifier.issn | 1303-6149 | |
dc.identifier.uri | https://doi.org/10.3906/mat-2002-76 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/11512 | |
dc.description.abstract | Let f be a continuous function which is periodic with respect to the hexagon lattice, and let A be a lower triangular infinite matrix of nonnegative real numbers with nonincreasing rows. The degree of approximation of the function f by matrix means T-n((A)) (f) of its hexagonal Fourier series is estimated in terms of the modulus of continuity of f. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Scientific Technical Research Council Turkey-Tubitak | en_US |
dc.relation.isversionof | 10.3906/mat-2002-76 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | Hexagonal Domain | en_US |
dc.subject | Hexagonal Fourier Series | en_US |
dc.subject | Holder Class | en_US |
dc.subject | Matrix Mean | en_US |
dc.title | Degree of approximation by means of hexagonal Fourier series | en_US |
dc.type | article | en_US |
dc.relation.journal | Turkish Journal of Mathematics | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0001-8878-250X | en_US |
dc.identifier.volume | 44 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 970 | en_US |
dc.identifier.endpage | 985 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |