dc.contributor.author | Özgür, Nihal | |
dc.contributor.author | Taş, Nihal | |
dc.date.accessioned | 2022-03-02T06:51:42Z | |
dc.date.available | 2022-03-02T06:51:42Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 1661-7738-1661-7746 | |
dc.identifier.uri | https://doi.org/10.1007/s11784-021-00863-3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/12062 | |
dc.description.abstract | Recently, the discontinuity problem at a fixed point has been studied by various aspects. In this paper, we investigate new solutions to the discontinuity problem using appropriate contractive conditions which are strong enough to generate fixed points (resp. common fixed points) but which do not force the map (resp. maps) to be continuous at fixed points. An application is also given to the fixed-circle problem on a metric space. | en_US |
dc.description.sponsorship | Balikesir University 2020/019 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Basel AG | en_US |
dc.relation.isversionof | 10.1007/s11784-021-00863-3 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Fixed Point | en_US |
dc.subject | Common Fixed Point | en_US |
dc.subject | Fixed Circle | en_US |
dc.subject | Discontinuity | en_US |
dc.title | New discontinuity results at fixed point on metric spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Fixed Point Theory and Applications | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-8152-1830 | en_US |
dc.identifier.volume | 23 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 14 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |