dc.contributor.author | Israfilov, Daniyal M. | |
dc.contributor.author | Gürsel, Elife | |
dc.date.accessioned | 2022-04-28T08:17:19Z | |
dc.date.available | 2022-04-28T08:17:19Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 2409-4986 - 2409-4994 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/12254 | |
dc.description.abstract | Let G be a simple connected bounded domain in the complex plane C. Imposing some additional conditions on the variable exponent p (.), we prove direct and inverse theorems of approximation theory in the variable exponent Smirnov classes E-p(.) (G), when the boundary Gamma := partial derivative G is a Carleson curve or so called regular Jordan curve. A constructive characterization of Lipschitz subclass of E-p(.) (G) is also obtained. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Inst Mathematics & Mechanics | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Variable Exponent Lebesgue Spaces | en_US |
dc.subject | p-Faber Polinomials | en_US |
dc.subject | Regular Curve | en_US |
dc.subject | Direct Theorem | en_US |
dc.subject | Inverse Theorem | en_US |
dc.subject | Modulus of Smoothness | en_US |
dc.title | Direct and inverse theorems in variable exponent smirnov classes | en_US |
dc.type | article | en_US |
dc.relation.journal | Proceedings of the Institute of Mathematics and Mechanics | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-1733-4635 | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 55 | en_US |
dc.identifier.endpage | 66 | en_US |
dc.relation.tubitak | "info:eu-repo/grantAgreement/TUBITAK/114F422" | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |