Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTaş, Nihal
dc.date.accessioned2024-01-09T08:09:11Z
dc.date.available2024-01-09T08:09:11Z
dc.date.issued2022en_US
dc.identifier.issn0354-5180
dc.identifier.urihttps://doi.org/10.2298/FIL2202579T
dc.identifier.urihttps://hdl.handle.net/20.500.12462/13754
dc.description.abstractIn this paper, some discontinuity results are obtained using the number M-C(t, t*) defined as M-C(t, t*) = max {(d(t, t*), ad(t, Tt) + (1-a)d(t*, St*))((1 -a)d(t, Tt) + ad(t*, St*),b/2 [d(t, St*) + d(t*, Tt))}, at the common fixed point. Our results provide a new and distinct solution to an open problem "What are the contractive conditions which are strong enough to generate a fixed point but which do not force the map to be continuous at fixed point?" given by Rhoades [33]. To do this, we investigate a new discontinuity theorem at the common fixed point on a complete metric space. Also an application to threshold activation function is given.en_US
dc.language.isoengen_US
dc.publisherUniv Nisen_US
dc.relation.isversionof10.2298/FIL2202579Ten_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFixed Pointen_US
dc.subjectCommon Fixed Pointen_US
dc.subjectDiscontinuityen_US
dc.titleOn discontinuity problem with an application to threshold activation functionen_US
dc.typearticleen_US
dc.relation.journalFilomaten_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0002-4535-4019en_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage579en_US
dc.identifier.endpage589en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster