Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorYıldırır, Yunus Emre
dc.contributor.authorÇilingir, Rahmiye
dc.date.accessioned2024-03-12T06:17:15Z
dc.date.available2024-03-12T06:17:15Z
dc.date.issued2023en_US
dc.date.submitted2023
dc.identifier.citationÇilingir, Rahmiye. Ağırlıklı lorentz uzaylarında eş zamanlı yaklaşım. Yayınlanmamış yüksek lisans tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2023.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14609
dc.descriptionBalıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Ana Bilim Dalıen_US
dc.description.abstractBu tez çalışması 5 bölümden oluşmaktadır. Birinci bölüm giriş bölümü olup tez konusuyla ilgili literatür özeti ve tez çalışmasının amacı bu bölümde verilmiştir. İkinci bölümde tezde kullanılan bütün terimlerin tanımları ve temel özellikleri verilmiştir. Özellikle ağırlıklı Lorentz uzayı ve bu uzayda trigonometrik yaklaşımın temel kavramları üzerinde durulmuştur. Üçüncü bölümde ağırlıklı Lorentz uzaylarında trigonometrik yaklaşımın düz teoremi ispatlanmıştır. Düz teoremin ispatlanması için gerekli tüm yardımcı teoremler de ifade ve ispat edilmiştir. Dördüncü bölümde ağırlıklı Lorentz uzaylarında trigonometrik yaklaşımın iyileştirilmiş ters teoremi ifade ve ispat edilmiştir. Yine bu ispatta gerekli yardımcı sonuçlar ispatlarıyla verilmiştir. Ayrıca bu uzaylarda geçerli yapısal karakterizasyon teoremi elde edilmiştir. Beşinci bölümde ise ağırlıklı Lorentz uzaylarından olan fonksiyonlara bu fonksiyonların Fourier serilerinin kısmi toplamları ve Poussin ortalamalarıyla eş zamanlı yaklaşım teoremleri ifade ve ispat edilmiştir.en_US
dc.description.abstractThis thesis work consists of 5 chapters. The first part is the introduction chapter. The literature summary about the thesis subject and the aim of the thesis study are given in this part. In the second chapter, definitions and basic properties of all terms used in the thesis are given. In particular, the weighted Lorentz space and the basic concepts of the trigonometric approximation in this space are emphasized. In the third chapter, the direct theorem of the trigonometric approximation in weighted Lorentz spaces is proven. All auxiliary theorems necessary to prove the direct theorem are also stated and proven. In the fourth chapter, the improved inverse theorem of the trigonometric approximation in weighted Lorentz spaces is stated and proven. Again, the necessary auxiliary results are given with their proofs. Additionally, a structural characterization theorem in these spaces has been obtained. In the fifth chapter, simultaneous approximation theorems to functions from weighted Lorentz spaces with partial sums of Fourier series and Poussin averages of these functions are stated and proven.en_US
dc.language.isoturen_US
dc.publisherBalıkesir Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAğırlıklı Lorentz Uzayıen_US
dc.subjectMuckenhoupt Koşuluen_US
dc.subjectDüzgünlük Modülüen_US
dc.subjectEn İyi Yaklaşım Sayıları Dizisien_US
dc.subjectFourier Serisi Kısmi Toplamlar Dizisien_US
dc.subjectDe La Vallée Poussin Ortalamasıen_US
dc.subjectWeighted Lorentz Spacesen_US
dc.subjectMuckenhoupt Conditionen_US
dc.subjectModulus of Smoothness Sequence of the Best Approximation Numbersen_US
dc.subjectFourier Series Sequence of Partial Sumsen_US
dc.subjectDe La Vallée-Poussin Meansen_US
dc.titleAğırlıklı lorentz uzaylarında eş zamanlı yaklaşımen_US
dc.title.alternativeSimultaneous approximation in weighted lorentz spacesen_US
dc.typemasterThesisen_US
dc.contributor.departmentFen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster