Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTaş, Nihal
dc.date.accessioned2024-05-30T05:56:37Z
dc.date.available2024-05-30T05:56:37Z
dc.date.issued2023en_US
dc.identifier.issn1989-4147
dc.identifier.urihttps://doi.org/10.4995/agt.2023.18552
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14760
dc.description.abstractIn this paper, we investigate new solutions to the Rhoades’ discontinuity problem on the existence of a self-mapping which has a fixed point but is not continuous at the fixed point on metric spaces. To do this, we use the number defined as (FORMULA PRESENTED), where α, β, γ ∈ (0, 1) with α + β + γ < 1 and some interpolative type contractive conditions. Also, we investigate some geometric properties of F ix(T ) under some interpolative type contractions and prove some fixed-disc (resp. fixed-circle) results. Finally, we present a new application to the discontinuous activation functions.en_US
dc.language.isoengen_US
dc.publisherUniversidad Politecnica de Valenciaen_US
dc.relation.isversionof10.4995/agt.2023.18552en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectFixed-Circle Problemen_US
dc.subjectİnterpolative Type Contractive Conditionen_US
dc.subjectRhoades’ Open Problemen_US
dc.titleInterpolative contractions and discontinuity at fixed pointen_US
dc.typearticleen_US
dc.relation.journalApplied General Topologyen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0002-4535-4019en_US
dc.identifier.volume24en_US
dc.identifier.issue1en_US
dc.identifier.startpage145en_US
dc.identifier.endpage156en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess