dc.contributor.author | Taş, Nihal | |
dc.date.accessioned | 2024-05-30T05:56:37Z | |
dc.date.available | 2024-05-30T05:56:37Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 1989-4147 | |
dc.identifier.uri | https://doi.org/10.4995/agt.2023.18552 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/14760 | |
dc.description.abstract | In this paper, we investigate new solutions to the Rhoades’ discontinuity problem on the existence of a self-mapping which has a fixed point but is not continuous at the fixed point on metric spaces. To do this, we use the number defined as (FORMULA PRESENTED), where α, β, γ ∈ (0, 1) with α + β + γ < 1 and some interpolative type contractive conditions. Also, we investigate some geometric properties of F ix(T ) under some interpolative type contractions and prove some fixed-disc (resp. fixed-circle) results. Finally, we present a new application to the discontinuous activation functions. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Universidad Politecnica de Valencia | en_US |
dc.relation.isversionof | 10.4995/agt.2023.18552 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Fixed-Circle Problem | en_US |
dc.subject | İnterpolative Type Contractive Condition | en_US |
dc.subject | Rhoades’ Open Problem | en_US |
dc.title | Interpolative contractions and discontinuity at fixed point | en_US |
dc.type | article | en_US |
dc.relation.journal | Applied General Topology | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.contributor.authorID | 0000-0002-4535-4019 | en_US |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 145 | en_US |
dc.identifier.endpage | 156 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |