Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYönet, Burçin Oktay
dc.contributor.authorAydın, Esra
dc.date.accessioned2024-06-06T07:52:19Z
dc.date.available2024-06-06T07:52:19Z
dc.date.issued2023en_US
dc.identifier.issn2217-3412
dc.identifier.urihttps://doi.org/10.54379/jma-2023-5-3
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14816
dc.description.abstractIn this paper, we suppose that the boundary of a domain G in the complex plane ℂ belongs to a special subclass of smooth curves and that the canonical domain GR, R > 1 is the largest domain where a function f is analytic. We investigate the rate of convergence to the function f by the partial sums of Faber series of the function f on the domain G. Under the boundary conditions of the domain G, we obtain some results which characterize the maximal convergence of the Faber expansion of the function f which belongs to the weighted Smirnov class with variable exponent [Formula presented].en_US
dc.language.isoengen_US
dc.publisherUniversity of Prishtinaen_US
dc.relation.isversionof10.54379/jma-2023-5-3en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectConformal Mappingsen_US
dc.subjectFaber Seriesen_US
dc.subjectMaximal Convergenceen_US
dc.subjectSmooth Curvesen_US
dc.subjectWeighted Smirnov Class with Variable Exponenten_US
dc.titleMaximal convergence of faber series in weighted smirnov classes with variable exponent on the domains bounded by smooth curvesen_US
dc.typearticleen_US
dc.relation.journalJournal of Mathematical Analysisen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0003-1088-4615en_US
dc.identifier.volume14en_US
dc.identifier.issue5en_US
dc.identifier.startpage28en_US
dc.identifier.endpage38en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster