Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTomar, Anita
dc.contributor.authorTaş, Nihal
dc.contributor.authorJoshi, Meena
dc.date.accessioned2024-06-13T11:28:01Z
dc.date.available2024-06-13T11:28:01Z
dc.date.issued2023en_US
dc.identifier.issn1607-2510
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14855
dc.descriptionTaş, Nihal (Balikesir Author)en_US
dc.description.abstractThe survival of a unique fixed point plays a central role in metric fixed point theory and has numerous applications in day-to-day life. However, if a self map has multiple fixed points, then looking at the geometry of the collection of fixed points is extremely appealing and natural. As a result, it is interesting to study the fixed figure problems utilizing interpolative techniques via S-metric spaces. In the present work, we examine novel hypotheses to explore the geometry of the collection of fixed points by establishing the existence of multiple fixed points via interpolative technique in S-metric spaces. Further, we exclude the possibility of an identity map in fixed circle (disc) conclusions. We verify the established conclusions by non-trivial illustrative examples. We conclude the work by discussing the parametric rectified linear unit activation function which is beneficial in the study of neural networks and solving integral equations which is beneficial in numerous mathematical models.en_US
dc.language.isoengen_US
dc.publisherTsing Hua Univen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectContractionen_US
dc.titleOn interpolative type multiple fixed points, their geometry and applications on s-metric spacesen_US
dc.typearticleen_US
dc.relation.journalApplied Mathematics E - Notesen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0001-8033-856Xen_US
dc.identifier.issue23en_US
dc.identifier.startpage243en_US
dc.identifier.endpage259en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster