Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBedir, Oğuz
dc.contributor.authorEkti, Ali Rıza
dc.contributor.authorÖzdemir, Mehmet Kemal
dc.date.accessioned2024-06-14T06:29:48Z
dc.date.available2024-06-14T06:29:48Z
dc.date.issued2023en_US
dc.identifier.issn2079-9292
dc.identifier.urihttps://doi.org/10.3390/electronics12194183
dc.identifier.urihttps://hdl.handle.net/20.500.12462/14856
dc.descriptionEkti, Ali Rıza (Balikesir Author)en_US
dc.description.abstractThe concept of spectrum sensing has emerged as a fundamental solution to address the growing demand for accessing the limited resources of wireless communications networks. This paper introduces a straightforward yet efficient approach that incorporates multiple stages that are based on deep learning (DL) techniques to mitigate Radio Frequency (RF) impairments and estimate the transmitted signal using the time domain representation of received signal samples. The proposed method involves calculating the energies of the estimated transmitted signal samples and received signal samples and estimating the energy of the noise using these estimates. Subsequently, the received signal energy and the estimated noise energy, adjusted by a correction factor (k), are employed in binary hypothesis testing to determine the occupancy of the wireless channel under investigation. The proposed system demonstrates encouraging outcomes by effectively mitigating RF impairments, such as carrier frequency offset (CFO), phase offset, and additive white Gaussian noise (AWGN), to a considerable degree. As a result, it enables accurate estimation of the transmitted signal from the received signal, with 3.85% false alarm and 3.06% missed detection rates, underscoring the system’s capability to adaptively determine a decision threshold for energy detection.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/electronics12194183en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectSpectrum Sensingen_US
dc.subjectEnergy Detectionen_US
dc.subjectDeep Learningen_US
dc.subjectAdaptive Thresholden_US
dc.titleExploring deep learning for adaptive energy detection threshold determination: A multistage approachen_US
dc.typearticleen_US
dc.relation.journalElektronicsen_US
dc.contributor.departmentMühendislik Fakültesien_US
dc.contributor.authorID0000-0003-2871-0437en_US
dc.contributor.authorID0000-0003-0368-0374en_US
dc.identifier.volume12en_US
dc.identifier.issue19en_US
dc.identifier.startpage1en_US
dc.identifier.endpage18en_US
dc.relation.ecinfo:eu-repo/grantAgreement/EC/FP7/101007321
dc.relation.ecinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/121N350
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess