Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorPiraei, Reza
dc.contributor.authorNiazka , Majid
dc.contributor.authorGangi, Fabiola
dc.contributor.authorTürkkan, Gökçen Eryılmaz
dc.contributor.authorAfzali, Seied Hosein
dc.date.accessioned2025-01-03T06:21:04Z
dc.date.available2025-01-03T06:21:04Z
dc.date.issued2024en_US
dc.identifier.issn2306-5338
dc.identifier.urihttps://doi.org/10.3390/hydrology11100163
dc.identifier.urihttps://hdl.handle.net/20.500.12462/15660
dc.descriptionTürkkan, Gökçen Eryılmaz ( Balikesir Author)en_US
dc.description.abstractThis paper presents a comparative analysis of machine learning (ML) models for predicting drought conditions using the Standardized Precipitation Index (SPI) for two distinct stations, one in Shiraz, Iran and one in Tridolino, Italy. Four ML models, including Artificial Neural Network (ANN), Multiple Linear Regression, K-Nearest Neighbors, and XGBoost Regressor, were employed to forecast multi-scale SPI values (for 6-, 9-, 12-, and 24-month) considering various lag times. Results indicated that the ML model with the most robust performance varied depending on station and SPI duration. Furthermore, ANN demonstrated robust performance for SPI estimations at Shiraz station, whereas no single model consistently outperformed the others for Tridolino station. These findings were further validated through the confidence percentage analysis performed on all ML models in this study. Across all scenarios, longer SPI durations generally yielded better model performance. Additionally, for Shiraz station, optimal lag times varied by SPI duration: 6 months for the 6- and 9-month SPI, 4 months for the 12-month SPI, and 2 months for the 24-month SPI. For Tridolino station, on the other hand, no definitive optimal lag time was identified. These findings contribute to our understanding of predicting drought indicators and supporting effective water resource management and climate change adaptation effortsen_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.isversionof10.3390/hydrology11100163en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDroughten_US
dc.subjectStandardized Precipitation Indexen_US
dc.subjectMachine Learningen_US
dc.subjectXGBoosten_US
dc.titleShort-term drought forecast across two different climates using machine learning modelsen_US
dc.typearticleen_US
dc.relation.journalHydrologyen_US
dc.contributor.departmentMühendislik Fakültesien_US
dc.contributor.authorID0000-0002-5022-1026en_US
dc.contributor.authorID0000-0002-9192-4369en_US
dc.contributor.authorID0000-0002-3019-0226en_US
dc.contributor.authorID0000-0002-9195-615Xen_US
dc.identifier.volume11en_US
dc.identifier.issue10en_US
dc.identifier.startpage1en_US
dc.identifier.endpage18en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster