Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOeser, Julian
dc.contributor.authorZurell, Damaris
dc.contributor.authorMayer, Frieder
dc.contributor.authorÇoraman, Emrah
dc.contributor.authorToshkova, Nia
dc.contributor.authorDeleva, Stanimira
dc.contributor.authorNatradze, Loseb
dc.contributor.authorIrmak, Sercan
dc.date.accessioned2025-01-08T06:33:29Z
dc.date.available2025-01-08T06:33:29Z
dc.date.issued2024en_US
dc.identifier.issn1466-822X / 1466-8238
dc.identifier.urihttps://doi.org/10.1111/geb.13911
dc.identifier.urihttps://hdl.handle.net/20.500.12462/15688
dc.descriptionScientific Research Projects Department of Istanbul Technical University TAB-2021-42831 Scientific Research Projects Department of Istanbul Technical University TGA-2023-43945 Competition Program of the Leibniz Associationen_US
dc.description.abstractAimSpecies distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.InnovationHere, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.Main ConclusionsOur approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.relation.isversionof10.1111/geb.13911en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectEnsembleen_US
dc.subjectExpert Range Mapen_US
dc.subjectMeta-Learneren_US
dc.subjectRange Limiten_US
dc.subjectRealised Distributionen_US
dc.subjectSDMen_US
dc.subjectSpecies Distribution Modellingen_US
dc.subjectStacked Generalisationen_US
dc.subjectStackingen_US
dc.subjectSuper Learneren_US
dc.titleThe best of two worlds: Using stacked generalisation for ıntegrating expert range maps in species distribution modelsen_US
dc.typearticleen_US
dc.relation.journalGlobal Ecology and Biogeographyen_US
dc.contributor.departmentAraştırma ve Uygulama Merkezlerien_US
dc.contributor.authorID0000-0002-1577-8208en_US
dc.contributor.authorID0000-0002-4628-3558en_US
dc.contributor.authorID0000-0001-8188-8651en_US
dc.identifier.volume33en_US
dc.identifier.issue12en_US
dc.identifier.startpage1en_US
dc.identifier.endpage13en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess