Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCeryan, Nurcihan
dc.contributor.authorCan, Nuray Korkmaz
dc.date.accessioned2019-08-05T07:07:14Z
dc.date.available2019-08-05T07:07:14Z
dc.date.issued2018en_US
dc.identifier.issn2326-6155
dc.identifier.urihttps://doi.org/10.4018/978-1-5225-2709-1.ch002
dc.identifier.urihttps://hdl.handle.net/20.500.12462/5787
dc.descriptionCeryan, Nurcihan (Balikesir Author)en_US
dc.description.abstractThis study briefly will review determining UCS including direct and indirect methods including regression model soft computing techniques such as fuzzy interface system (FIS), artifical neural network (ANN) and least sqeares support vector machine (LS-SVM). These has advantages and disadvantages of these methods were discussed in term predicting UCS of rock material. In addition, the applicability and capability of non-linear regression, FIS, ANN and LS-SVM SVM models for predicting the UCS of the magnatic rocks from east Pondite, NE Turkey were examined. In these soft computing methods, porosity and P-durability secon index defined based on P-wave velocity and slake durability were used as input parameters. According to results of the study, the performanc of LS-SVM models is the best among these soft computing methods suggested in this study.en_US
dc.language.isoengen_US
dc.publisherIgi Globalen_US
dc.relation.isversionof10.4018/978-1-5225-2709-1.ch002en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titlePrediction of the uniaxial compressive strength of rocks materialsen_US
dc.typebookParten_US
dc.relation.journalHandbook of Research on Trends and Digital Advances in Engineering Geologyen_US
dc.contributor.departmentBalıkesir Meslek Yüksekokuluen_US
dc.identifier.startpage31en_US
dc.identifier.endpage96en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster