dc.contributor.author | İkikardeş, Sebahattin | |
dc.contributor.author | Şahin, Recep | |
dc.date.accessioned | 2019-10-16T11:13:37Z | |
dc.date.available | 2019-10-16T11:13:37Z | |
dc.date.issued | 2010 | en_US |
dc.identifier.issn | 1224-1784 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/7016 | |
dc.description.abstract | Let X be a compact bordered Klein surface of algebraic genus p >= 2 and let G = Gamma*/Lambda be a group of automorphisms of X where Gamma* is a non-euclidian chrystalographic group and Lambda is a bordered surface group. If the order of G is 4(q)/q-2)(p-1), for q >= 3 a prime number, then the signature of Gamma* is (0; +;[-] {(2,2,2,q)}). These groups of automorphisms are called generalized M*-groups. In this paper, we give some results and examples about generalized M*-groups. Then, we construct new generalized M*-groups from a generalized M*-group G (or not necessarily generalized M*-group). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Ovidius Unıv Press | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | M* -Groups | en_US |
dc.subject | Generalized M* -Groups | en_US |
dc.subject | Klein Surfaces | en_US |
dc.title | On generalized M* - groups | en_US |
dc.type | article | en_US |
dc.relation.journal | Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 18 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 197 | en_US |
dc.identifier.endpage | 204 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |