dc.contributor.author | Israfilov, Daniyal M. | |
dc.contributor.author | Oktay, Burçin | |
dc.date.accessioned | 2019-10-17T08:17:26Z | |
dc.date.available | 2019-10-17T08:17:26Z | |
dc.date.issued | 2006 | en_US |
dc.identifier.issn | 1370-1444 | |
dc.identifier.issn | 2034-1970 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/7934 | |
dc.description.abstract | Let G be a finite Dini-smooth domain and w = phi(0)(z) be the confornial mapping of G onto D (0, r(0)) := {w :vertical bar w vertical bar < r(0)) with the normalization phi(0)(z(0)) = 0, phi'(0)(z(0)) = 1, where z(0) is an element of G. We investigate the approximation properties of the Bieberbach polynomials pi(n)(z) = 1,2,3(...) for the pair (G, z(0)) and estimate the error
parallel to phi(0)-pi(n)parallel to((G) over bar) := max{vertical bar phi 0(z) - pi(n) (z) vertical bar: z is an element of (G) over bar}
in accordance with the geometric parameters of (G) over bar. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Belgian Mathematical Soc Triomphe | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bieberbach Polynomials | en_US |
dc.subject | Conformal Mapping | en_US |
dc.subject | Dini-Smooth Domains | en_US |
dc.subject | Lyapunov Curves | en_US |
dc.title | Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains | en_US |
dc.type | article | en_US |
dc.relation.journal | Bulletin of the Belgian Mathematical Society-Simon Stevin | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 13 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 91 | en_US |
dc.identifier.endpage | 99 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |