dc.contributor.author | Akgün, Ramazan | |
dc.contributor.author | Israfilov, Daniyal M. | |
dc.date.accessioned | 2019-10-17T08:23:54Z | |
dc.date.available | 2019-10-17T08:23:54Z | |
dc.date.issued | 2006 | en_US |
dc.identifier.issn | 0304-9914 | |
dc.identifier.issn | 2234-3008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/7976 | |
dc.description.abstract | Let F be a bounded rotation (BR) curve without cusps in the complex plane C and let G : = int Gamma. We prove that the rate of convergence of the interpolating polynomials based on the zeros of the Faber polynomials F-n for (G) over bar to the function of the reflexive Smirnov-Orlicz class E-M (G) is equivalent to the best approximating polynomial rate in E-M (G). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Korean Mathematical Soc | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Curves Of Bounded Rotation | en_US |
dc.subject | Faber Polynomials | en_US |
dc.subject | İnterpolating Polynomials | en_US |
dc.subject | Smirnov-Orlicz Class | en_US |
dc.subject | Orlicz Space | en_US |
dc.subject | Cauchy Singular Operator | en_US |
dc.title | Approximation by interpolating polynomials in Smirnov-Orlicz class | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of the Korean Mathematical Society | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 413 | en_US |
dc.identifier.endpage | 424 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |