Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTekin, Nalan
dc.contributor.authorDemirbaş, Özkan
dc.contributor.authorAlkan, Mahir
dc.contributor.authorKara, Ali
dc.contributor.authorDoğan, Mehmet
dc.date.accessioned2019-10-17T10:26:29Z
dc.date.available2019-10-17T10:26:29Z
dc.date.issued2006en_US
dc.identifier.issn1387-1811
dc.identifier.issn1873-3093
dc.identifier.urihttps://doi.org/ 10.1016/j.micromeso.2006.02.009
dc.identifier.urihttps://hdl.handle.net/20.500.12462/8065
dc.descriptionTekin, Nalan (Balıkesir Author)en_US
dc.description.abstractAdsorption, electrokinetic properties and the interactions between polymer and clay minerals have recently received much attention, owing to the physicochemical properties of these materials. In this study, surface properties of poly(vinylimidazole)-adsorbed expanded perlite such as adsorption, adsorption kinetics and electrokinetic properties have been investigated as a function of temperature, ionic strength and pH. The zeta potential measurements have been performed to determine the isoelectric point (iep) and potential determining ions (pdi). Although pH strongly altered the zeta potential of expanded perlite sample, expanded perlite does not yield any isoelectric point in the pH ranges of 2-11, poly(vinylimidazole) (PVI) changes the interface charge from negative to positive for expanded perlite when adsorbed on its surface. Adsorbed amounts (q(e)) showed a great dependence on pH. The adsorption of PVI increases with increasing pH, ionic strength and temperature. The pH values where the maximum adsorbed mass occurred might be considered as the conditions where electrostatic attraction is the most favourable. Experimental adsorption data were investigated using Langmuir and Freundlich isotherm models and found that Langmuir isotherm model gave the best representation of the adsorption equilibrium. In order to investigate the mechanism of adsorption and potential rate controlling step, pseudo-first- and second-order kinetic equations, and intraparticle diffusion model have been used to test the experimental data. The rate constants and the related correlation coefficients were determined in order to assess which model provides the best-fit predicted data with experimental results. Pseudo-first-order kinetic equation provided the best fit to experimental data.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Bven_US
dc.relation.isversionof10.1016/j.micromeso.2006.02.009en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAdsorptionen_US
dc.subjectAdsorption Kineticsen_US
dc.subjectZeta Potentialen_US
dc.subjectExpanded Perliteen_US
dc.subjectPoly(Vinylimidazole)en_US
dc.titleSurface properties of poly(vinylimidazole)-adsorbed expanded perliteen_US
dc.typearticleen_US
dc.relation.journalMicroporous and Mesoporous Materialsen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorID0000-0001-9548-0227en_US
dc.identifier.volume93en_US
dc.identifier.issue1-3en_US
dc.identifier.startpage125en_US
dc.identifier.endpage133en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster