dc.contributor.author | Bayram, Bengü Kılıç | |
dc.contributor.author | Arslan, Kadri | |
dc.contributor.author | Önen, Nergiz | |
dc.contributor.author | Bulca, Betül | |
dc.date.accessioned | 2019-10-17T11:05:47Z | |
dc.date.available | 2019-10-17T11:05:47Z | |
dc.date.issued | 2014 | en_US |
dc.identifier.issn | 0354-5180 | |
dc.identifier.uri | https://doi.org/10.2298/FIL1410131B | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/8424 | |
dc.description | Bayram, Bengü Kılıç (Balikesir Author) | en_US |
dc.description.abstract | Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Delta. In the present study we consider coordinate finite-type surfaces in E-4. We give necessary and sufficient conditions for generalized rotation surfaces in E-4 to become coordinate finite-type. We also give some special examples. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Nis | en_US |
dc.relation.isversionof | 10.2298/FIL1410131B | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Surfaces Of Restricted Type | en_US |
dc.subject | Rotational Surface | en_US |
dc.subject | Finite Type Surfaces | en_US |
dc.title | Coordinate finite type rotational surfaces in euclidean spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | Filomat | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 28 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 2131 | en_US |
dc.identifier.endpage | 2140 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |