dc.contributor.author | Güven, Ali | |
dc.date.accessioned | 2019-10-17T11:49:54Z | |
dc.date.available | 2019-10-17T11:49:54Z | |
dc.date.issued | 2012 | en_US |
dc.identifier.issn | 0219-5305 | |
dc.identifier.issn | 1793-6861 | |
dc.identifier.uri | https://doi.org/10.1142/S0219530512500030 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/8767 | |
dc.description.abstract | The Lipschitz classes Lip(alpha, p(x)), 0 < alpha <= 1 are defined for the Lebesgue spaces L-p(x) with variable exponent p(x), and the degree of approximation by matrix transforms of f is an element of Lip(alpha, p(x)) is estimated by n(-alpha). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.isversionof | 10.1142/S0219530512500030 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Lebesgue Space With Variable Exponent | en_US |
dc.subject | Lipschitz Class | en_US |
dc.subject | Matrix Transform | en_US |
dc.subject | Modulus of Continuity | en_US |
dc.subject | Norlund Transform | en_US |
dc.title | Trigonometric approximation by matrix transforms in l-p(x) spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | Analysis and Applications | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 47 | en_US |
dc.identifier.endpage | 65 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |