dc.contributor.author | İkikardeş, Sebahattin | |
dc.contributor.author | Şahin, Recep | |
dc.date.accessioned | 2019-10-17T12:09:41Z | |
dc.date.available | 2019-10-17T12:09:41Z | |
dc.date.issued | 2012 | en_US |
dc.identifier.issn | 0041-6932 | |
dc.identifier.issn | 1669-9637 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12462/8916 | |
dc.description.abstract | A compact Klein surface with boundary of algebraic genus g >= 2 has at most 12(g - 1) automorphisms. When a surface attains this bound, it has maximal symmetry, and the group of automorphisms is then called an M*-group. If a finite group G of odd order acts on a bordered Klein surface X of algebraic genus g >= 2, then vertical bar G vertical bar <= 3(g - 1). If G acts with the largest possible order 3(g - 1), then G is called an O*-group. In this paper, using the results about some normal subgroups of the extended modular group (Gamma) over bar, we obtain some results about O*-groups. Also, we give the relationships between O*-groups and M*-groups. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Union Matematica Argentina | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | O*-Groups | en_US |
dc.subject | Extended Modular Group | en_US |
dc.subject | M*-Groups | en_US |
dc.title | Some results on o*-groups | en_US |
dc.type | article | en_US |
dc.relation.journal | Revista De La Union Matematica Argentina | en_US |
dc.contributor.department | Fen Edebiyat Fakültesi | en_US |
dc.identifier.volume | 53 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 25 | en_US |
dc.identifier.endpage | 30 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |